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Goals for lecture

• Attentions
– Interpretation
– Self and Cross-Attention Calculation
– Multi-Head Attention

• Transformer architecture
– Positional Encoding
– Generative Output

• Applications to bioinformatics
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Attention Interpretation
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https://blog.research.google/2017/08/transformer-novel-neural-network.html

scores



Attention Calculation
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https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
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Attention Calculation
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https://medium.com/@YanAIx/step-by-step-into-transformer-79531eb2bb84

• Embeddings are passed 
through feed-forward networks 
to produce a query vector, as 
well as key and value vectors

• Value vectors are summed 
proportionally to the similarity 
between their corresponding 
keys and the query



Attention Calculation
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https://medium.com/@YanAIx/step-by-step-into-transformer-79531eb2bb84

• Key and query vectors can 
be thought of as sharing a 
latent space

• The distance between the 
query and keys then 
determines the final output 
in value spaceQuery
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Types of Attention
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Multi-Head Attention
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https://www.tensorflow.org/text/tutorials/transformer

Each attention module is known as 
a ‘head’

Multi-head attention involves 
aggregating multiple heads, 
usually culminating in average 
pooling

This allows each head to prioritize 
differing features of the sequence 
(e.g. noun-noun relationships, 
noun-verb relationships)



Transformer Outline
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Example: Generative Text
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https://www.springboard.com/blog/news/chatgpt-revolution/



Transformer Architecture
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https://www.tensorflow.org/text/tutorials/transformer
Encoder Decoder



Input Embedding
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https://www.tensorflow.org/text/tutorials/transformer



Positional Encoding
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https://www.tensorflow.org/text/tutorials/transformer

Add positional representations to 
word embeddings

• Allows the network to consider 
word proximity



Positional Encoding
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https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/



Positional Encoding
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https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/



Positional Encoding
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https://www.tensorflow.org/text/tutorials/transformer



Attention Modules

18

https://www.tensorflow.org/text/tutorials/transformer

Prioritize bases relative to each 
other

• This is the primary 
mechanism which allows 
transformers to work

• Essentially adds context to 
existing embeddings



Self and Cross-Attention
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https://www.tensorflow.org/text/tutorials/transformer

Self-attention
(Q=K=V)

Cross-attention
(Q from decoder)

(K=V from encoder)

Self-attention
(Q=K=V)



Transformer Attention
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Transformer Decoder
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https://www.tensorflow.org/text/tutorials/transformer

For generative outputs, repeatedly
choose the most likely next element
until the end of the sequence

0. <start>
1. <start> A
2. <start> A T
3. <start> A T T
4. <start> A T T G
5. <start> A T T G <end>



Example: Protein Function 
Annotation

22

Yue Cao et al. Bioinformatics 2021; 37:18



Example: Enhancer Prediction 
from DNA Sequence
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Žiga Avsec et al. Nature Methods 2021; 18

Transformers have 
applications other than 
sequence generation as well

A C C T A G A A C G
Enformer



Example: Enhancer Prediction 
from DNA Sequence
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Žiga Avsec et al. Nature Methods 2021; 18

Instead of generating a DNA 
sequence, genomic tracks (e.g. 
TF binding, accessibility) can 
be generated instead

• Convolve 100kb to produce 
features for each base with 
attention pooling

• Feed to multiple self-
attention blocks (transformer 
encoder)

• Apply final convolutions to 
predict tracks for humans or 
mice



Example: Enhancer Prediction 
from DNA Sequence
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Žiga Avsec et al. Nature Methods 2021; 18

Predict attribute-correlated 
locations based on DNA 
sequence

Transformers allow for 
broader search regions with 
fewer computational limits



Example: Enhancer Prediction 
from DNA Sequence
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Žiga Avsec et al. Nature Methods 2021; 18

Attention 
Scores

CRISPRi 
Validation

After predicting tracks, known 
enhancers line up with 
calculated attention scores


