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Gaussian distribution
• A random variable, 𝑥~𝒩(𝜇, 𝜎!)

• x is # of mapped reads at a position
–  𝜇 is average reads, 𝜎! show how reads 

fluctuate from average across regions
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https://en.wikipedia.org/wiki/Normal_distribution

pdf(x) =

https://en.wikipedia.org/wiki/Normal_distribution


Multivariate Gaussian distributions
• Multiple random variables 
– �⃗� = [𝑥" 𝑥! … 𝑥#]T ~𝒩(�⃗�, 𝜮)

–    

– Covariance matrix 
	 𝜮 = 𝐸[ �⃗� − 𝜇 �⃗� − 𝜇 ! ]

• # of reads at Position i and Position j

– [xi xj] ~𝒩([𝜇𝑖	𝜇𝑗],
𝜎"
# 𝐸[(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)]

𝐸[(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)] 𝜎$#
)
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pdf(�⃗�)= %
(#')!/#|𝜮|$/#

𝑒+
$
# -⃗+.

%𝜮&$ -⃗+.

https://distill.pub/2019/visual-exploration-
gaussian-processes/#Multivariate

https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/


Kernel function for covariance

• Covariance measures “similarity” of xi and xj
– 𝑘 𝑖, 𝑗 = 𝐸[(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)]

• Replace by other kernel functions defining 
covariance
– Radial Basis Function (RBF)

         𝑘𝑅𝐵𝐹 𝑖, 𝑗 = 𝜎!exp(− (%&')!
!)#

)

• Also, mean functions 𝜇 𝑖 , 𝜇(𝑗)
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Gaussian process (GP)
• A stochastic process with mean function 
𝜇 .  and covariance function 𝑘 . , .  so that 
any finite set of multi-variates [𝑥" 𝑥! … 𝑥#] 
is from 𝒩(𝝁,𝑲)
– 𝝁 is n-dimension vector with ith element = 𝜇 𝑖
– 𝑲 is a symmetric matrix (n x n) and 𝑲𝑖, 𝑗= 𝑘 𝑖, 𝑗

• 𝑥
(. )
	~	𝓖𝓟(𝜇 . , 𝑘 . , . )

– Infinite number of random variables, 𝑥" 𝑥! … 
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Gaussian process regression
• f(i) is a regression function to predict # of 

reads xi on position i
– 𝑥𝑖 = 𝑓 𝑖 + 𝜀𝑖, where 𝜀𝑖 is noise ~ 𝒩(0, 𝜎!)

• 𝓖𝓟(0, 𝑘 . , . ) as prior for regression 
function to predict a distribution of x
– Observed data S= {𝑝, 𝑥𝑝}, 𝑝 ∈ {1,2, … }
– New data T={𝑞, 𝑥𝑞} 
– To predict posterior P(𝑥𝑞|𝑥𝑝,𝑝, 𝑞) ~𝒩(�⃗� ∗, 𝜮 ∗) 
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Gaussian process regression
• 𝓖𝓟(0, 𝑘 . , . ) as prior for regression 

function to predict a distribution of x
– Joint probability P(𝑥𝑝,𝑥𝑞| 𝑝, 𝑞) by 𝓖𝓟
– P(𝑥𝑞|𝑥𝑝,𝑝, 𝑞) ~ P(𝑥𝑝,𝑥𝑞| 𝑝, 𝑞) / P(𝑥𝑝| 𝑝) by Bayes 

rule
–  
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𝜇 ∗= 𝐊(𝑝, �⃗�)(𝐊 𝑝, 𝑝 + 𝜎#I)-1𝑥/
𝜮 ∗= 𝐊 �⃗�, �⃗� + 𝜎#I − 𝐊(𝑝, �⃗�)(𝐊 𝑝, 𝑝 + 𝜎#I)-1𝐊(𝑝, �⃗�)



Gaussian processes
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• Can model and smooth sequential data

• Bayesian approach

• Jupyter notebook demonstration

https://nbviewer.jupyter.org/urls/www.biostat.wisc.edu/bmi776/code/gaussian_process.ipynb


DNase I hypersensitive sites
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• Arrows indicate DNase I cleavage sites
• Obtain short reads that we map to the genome

Wang PLoS ONE 2012



DNase I footprints
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• Distribution of mapped reads is informative of 
open chromatin and specific TF binding sites

Read depth at each positionI
ChIP-Seq peak

Nucleosome free 
“open” chromatin

Neph Nature 2012

Zoom in

TF binding prevents 
DNase cleavage leaving 
Dnase I “footprint”, only 
consider 5′ end



DNase I footprints to TF 
binding predictions
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• DNase footprints suggest that some TF binds that 
location

• We want to know which TF binds that location

• Two ideas:
– Search for DNase footprint patterns, then match TF motifs
– Search for motif matches in genome, then model proximal 

DNase-Seq reads

We’ll consider this approach 
for TF/motif specific effects



Protein Interaction 
Quantification (PIQ)

12Rieck and Wright Nature Biotechnology 2014

• Sherwood et al. Nature 
Biotechnology 2014

• Given: TF motifs and 
DNase-Seq reads

• Do: Predict binding sites of 
each TF



PIQ main idea
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• With no TF binding, DNase-Seq reads come 
from some background distribution

• TF binding changes read density in a TF-
specific way

Background
TF effects



PIQ main idea
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• Shape of DNase peak and footprint depend on the TF

TF BTF A

Sherwood Nature Biotechnology 2014



PIQ features
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• We’ll discuss
– Modeling the DNase-Seq background distribution
– How TF binding impacts that distribution
– Priors on TF binding
– Single experiment/strand, single factor 

• We’ll skip
– Modeling multiple replicates or conditions, cross-

experiment and cross-strand effects
– Expectation propagation, iteratively approximating 

probability distributions
– TF hierarchy: pioneers, settlers, migrants



Algorithm preview
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• Identify candidate binding sites with PWMs
• Build a probabilistic model of the DNase-Seq reads
• Estimate TF binding effects
• Estimate which candidate binding sites are bound
• Predict pioneer, settler, and migrant TFs



DNase-Seq background
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• Each replicate is noisy, don’t want to over-
interpret this noise
– Only counting density of 5′ ends of reads

• Manage two competing objectives
– Smooth some of the noise
– Don’t destroy base pair resolution signal



Raw Dnase-seq reads from GP

• Log-read rate per base u from a Gaussian 
Process 𝒩(�⃗�*, 𝜮)
– Positions 𝑖 and 𝑗	: 𝑢! and 𝑢"	, 𝜮!," = 𝜎$𝑘 𝑖 − 𝑗
– e.g., 𝑘 is correlation

• # of reads (read counts) 𝑐%	at Position 𝑖	
– 𝑐!	~Poisson(exp(𝑢!))

• Estimate a background GP(𝜇*, 𝜎*, 𝑘, 𝜮&")
– Supplement C.5
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TF-specific DNase profile
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• Adjust the log-read rate by a TF-specific 
effect at binding sites

I𝜇%,) = 𝜇% + J
𝛽%&,!,)	 𝑖 − 𝑦- ≤ 𝑊	𝑎𝑛𝑑	𝐼- = 1
0	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

DNase profile 
for factor l

DNase log-read 
rate adjusted for 
binding of factor l

DNase log-read rate 
at position i from 
Gaussian process

Midpoint location 
of binding site m

Whether site 
m is bound

Window size



TF DNase profile
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• DNase profiles represented as a vector for 
each TF

I𝜇%,) = 𝜇% + J
𝛽%&,!,)	 𝑖 − 𝑦- ≤ 𝑊	𝑎𝑛𝑑	𝐼- = 1
0	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

DNase profile 
for factor l

𝑦-

𝑊𝑊

𝑖

𝛽

𝑙 =

Can’t be too far apart

… …

𝜇 I



Priors on TF binding
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• TF binding event      should 
be more likely when
– motif score      is high
– DNase counts      are high 

(around matched motif)

• Isotonic (monotonic) 
regression

𝐼'

log(𝑃(𝐼' = 1)) 	= 𝑓 𝑠' + 𝑔(𝑐')

𝑠'

Wikipedia

𝑐'

𝑠'

𝑓 𝑠'

Example only, not realistic data

https://en.wikipedia.org/wiki/Isotonic_regression


Estimate Gaussian 
Process posterior

• Given background, read counts ci and 
TF binding event 𝐼$
– Estimate Mean E[𝑢%| 𝑐%] and variance 

Var[𝑢%| 𝑐%] 
• Non-binding sites by expectation 

propagation
• Binding sites by TF-specific effect 

model 
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Estimate binding sites

• Given posterior mean and variance E[𝑢] 
and Var[𝑢] per base
– Estimate Lj=odd ratio(Prob(bound at 

j)/Prob(not bound at j)=fj + gj +logit(pj)
– pj  is determined by P(counts | binding or 

not, posterior 𝑢)
• Given Lj, 𝑠$, 𝑐$, and update priors f & g 

by least-square monotone regression
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Full algorithm

24

• Given: TF motifs and DNase-Seq reads
• Do: Predict binding sites of each TF (via probability)

• Identify candidate binding sites with PWMs
• Fit Gaussian process parameters for background
• Calculate TF binding effects

– using the top 10000 scoring motifs as bound sites

• Iterate until parameters converge
– Estimate Gaussian process posterior (Slide #22)
– Estimate expectation of which candidate binding sites are bound 

(Slide #23)
– Update monotonic regression functions for binding priors (Slide #21)

• Supplement Page 8

𝛽%&',)



TF binding hierarchy
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• Pioneer, settler, and migrant TFs

Sherwood Nature Biotechnology 2014



Evaluation: confusion matrix
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• Compare predictions to actual ground truth 
(gold standard)

Lever Nature Methods 2016



Evaluation: ChIP-Seq gold standard

27Sung Molecular Cell 2014



Evaluation: ROC curve
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• Calculate receiver operating characteristic curve 
(ROC)

• True Positive Rate(TPR) versus False Positive Rate 
(FPR)

• Summarize with area under ROC curve (AUROC)

FNTP
TP

P
TPTPR

+
==

TNFP
FP

N
FPFPR

+
==

Includes true negatives
Reason to prefer precision-recall for class 

imbalanced data

https://en.wikipedia.org/wiki/Receiver_operatin
g_characteristic#/media/File:ROC_curves.svg

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic


Evaluation: ROC curve
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• TPR and FPR are 
defined for a set of 
positive predictions

• Need to threshold 
continuous 
predictions

• Rank predictions
• ROC curve assesses 

all thresholds

Candidate P(bound)
binding site
764  0.99
47  0.96
942  0.91
157  0.87
79  0.83
202  0.72
356  0.66
679  0.51
291  0.43
810  0.40
…

t

Calculate TPR and 
FPR at all thresholds t

Positive 
predictions

Negative 
predictions



Precision-Recall Curve
• Precision = TP/(TP+FP)
• Recall = TP/(TP+FN) = TPR
• https://www.datascienceblog.net/post/mac

hine-learning/interpreting-roc-curves-auc/ 

30http://mlwiki.org/index.php/Precision_and_Recall 

https://www.datascienceblog.net/post/machine-learning/interpreting-roc-curves-auc/
https://www.datascienceblog.net/post/machine-learning/interpreting-roc-curves-auc/
http://mlwiki.org/index.php/Precision_and_Recall


PIQ ROC curve for mouse Ctcf
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• Compare predictions to ChIP-Seq
• Full PIQ model improves upon motifs or 

DNase alone

Sherwood Nature Biotechnology 2014



PIQ evaluation

32Sherwood Nature Biotechnology 2014

• Compare to two standard methods
– 303 ChIP-Seq experiments in K562 cells
– Centipede, digital genomic footprinting

• Compare AUROC
– PIQ has very high AUROC
– Mean 0.93
– Corresponds to recovering 

median of 50% of binding 
sites



DNase-Seq benchmarking

33

• PIQ among top methods in large scale DNase 
benchmarking study

• HMM-based model HINT was top performer

Gusmao Nature Methods 2016



Downside of AUROC for 
genome-wide evaluations
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Almost all methods look equally 
good when using full ROC curve
AUROC close to 1.0

Precision-recall curve or 
truncated ROC curve 
differentiate methods

Gusmao Nature Methods 2016



PIQ summary
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• Smooth noisy DNase-Seq data without 
imposing too much structure

• Combine DNase-Seq and motifs to predict 
condition-specific binding sites

• Supports replicates and multiple related 
conditions (e.g. time series)


