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Overview

 RNA-Seq technology
* Gene expression quantification by RNA-seq

* |Interpolated Markov Model
— Finding bacterial genes



Goals for lecture

What is RNA-Seq?

How is RNA-Seq used to measure the
abundances of RNAs within cells?

What probabilistic models and algorithms are
used for analyzing RNA-Seq?

Finding genes



Your genome Is your genetic codebook

Book Genome Human
Chapters Chromosomes | ¢ 46 chromosomes
Sentences Genes  ~ 20,000 — 25,000 genes
Words Elements  ~ Millions elements
Letters Bases * 4 unique bases (A, T, C, G), ~3 billion in total
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How to read your genetic codebook?

Book Genome
BARACK Chapt(’r()nc
G OBAMA . Chapters Chromosomes
ZE]ITY Republicans and
’ Sentences Genes

Democrats
- //\ Words Elements %
ey Letters Bases

“On most days, | enter the Capitol
through the basement. A small
subway train carries me from the Hart
Building, where ..."

-n‘A'CGk'::‘”:E:']c""GCHGCGG(“G“CE”CGA’CG,\T““(”GE s
fi;ASAT:g:‘IQEHC3*';-'5“"“.GH,\[MTCEAICG#TCGHAIGEHS(‘
j%;,;g;H_'-[H'SCT.!GCTAEAS;\’CGA’;ZGT.:GC'AGCIAG(IAGCHG_&GH 6
fw]r’.!r“‘,\ICEHEEAICCGATCEA";
pl ol oRiLE .
onceneneenserascttaceny © Coding elements
T ATCGATCGATCGATCE TCGAGCTAG o
T ATCGATCEATCOATCECEATCGAGCT AR (Exon, 2A))
TATCGATCGATCGATCE (I )
— - Become proteins
carrying out functions
* Non-coding
)
elements (98%)
ITAgsLvInuUL nus nuviIinu »n
’Mccucc'u:'aem;u
ceptacle for inkwells and quills. Open the drawer of any desk, ['G”':ElT:E"":E”CGAT:GAT3 ’\T(GAICGAICSATCEATS ot

« Key words

* Non-key words
Overhead, the ceiling forms a creamy white oval, with an Ameri- Gene 1

can eagle etched in its center. Above the visitors’ gallery, the busts

of the nation’s first twenty vice presidents sit in solemn repose.

And in gentle steps, one hundred mahogany desks rise from Gene 2

the well of the Senate in four horseshoe-shaped rows. Some of

iceri el

AG

these desks date back to 1819, and atop cach desk is a tidy re-

and you will find within the names of the senators who once v

used it—Taft and Long, Stennis and Kennedy—scratched or .
. e . : . . https://goo.gl/images/vMaz4T
penned in the senator’s own hand. Sometimes, standing there in
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Central dogma
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https://www.genome.gov/genetics-glossary/Transcription



Gene expression and regulation

Identical DNA but different Central d anslat Protein
gene expression entral dogma er?lg\s a%
transcr/pt/of
Gene
—lll—— DNA

Gene expression levels (e.g., values to
quantify RNA abundances)
\ 1/

nerve7>§ skin ,,;:
s Ve
\
|
Cell type

Gene regulation: which & how genes express?
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Measuring transcription the
old way: microarrays

« Each spot has “probes” for a
certain gene

 Probe: a DNA sequence
complementary to a certain
gene

 Relies on complementary
hybridization

« Intensity/color of light from
each spot is measurement of
the number of transcripts for a
certain gene in a sample

« Requires knowledge of gene
sequences

8



Advantages of RNA-Seq over
microarrays

* No reference sequence needed

— With microarrays, limited to the probes on
the chip

* Low background noise
« Large dynamic range
— 10° compared to 107 for microarrays
* High technical reproducibility
* |dentify novel transcripts and splicing events



RNA-Seq technology

* Leverages rapidly advancing sequencing
technology

* Transcriptome analog to whole genome shotgun
sequencing
* Two key differences from genome sequencing:

1. Transcripts sequenced at different levels of
coverage - expression levels

2. Sequences already known (in many cases) -
coverage is measurement

10



A generic RNA-Seq protocol

Sample
RNA

M

—
—~_~ [fragmentation

RNA

cDNA

fragments fragments
_ _ = reverse = = =
_ - transcription + = sequencing
_ — — amplification == = machine
~ =
- = - = = :=_:=
S— - = = — E —
h —
~— - =
- - = =
- ==:= =
- = =
— - = e
== R =
]
- =

reads

CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT
CCCGCGCGCTTAGGCTACTCG
TCACACATCTCTAGCTAGCAT
CATGCTAGCTATGCCTATCTA

11




RNA-Seq data: FASTQ format

@HWUSI-EAS1789_0001:3:2:1708:1305#0/1
CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG
+HWUSI-EAS1789_0001:3:2:1708:1305#0/1
VVULVBVYVYZZXZZ\ee[arb™ [a\a[\\aAAA\

@HWUSI-EAS1789_0001:3:2:2002:1304#0/1

TTTTTNCAGAGTTTTTTCTTGAACTGGAAATTTTT
+HWUSI-EAS1789_0001:3:2:2062:1304#0/1
a__[\Bbbb edeeefd cc b]bffff ffffff
@HWUSI-EAS1789_0001:3:2:3194:1303#0/1
GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA
+HWUSI-EAS1789_0001:3:2:3194:1303#0/1
ZZ[[VBZZY][TWQQZ\ZS\[ZZXV__\OX a[ZZ
@HWUSI-EAS1789_0001:3:2:3710:1304#0/1
GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG
+HWUSI-EAS1789_0001:3:2:3716:1304#0/1
aaXWYBZVTXZX_]Xdccdfbb_\"a\aY_A]LZA
@HWUSI-EAS1789_0001:3:2:5000:1304#0/1
CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA
+HWUSI-EAS1789_0001:3:2:5000:1304#0/1
aaaaaBeeeef fffehhhhhhggdhhhhahhhadh

* name

———sequence read

gualities

paired-end reads

reag

read?

1 lllumina HiSeq 2500 lane

v

~150 million reads



Tasks with RNA-Seq data

« Assembly:
— Given: RNA-Seq reads (and possibly a genome sequence)
— Do: Reconstruct full-length transcript sequences from the reads
« Quantification (our focus):
— Given: RNA-Seq reads and transcript sequences
— Do: Estimate the relative abundances of transcripts (“gene expression”)
« Differential expression or additional downstream analyses:
— Given: RNA-Seq reads from two different samples and transcript sequences

— Do: Predict which transcripts have different abundances between two

1
samples 3



RNA-Seq is a relative abundance

measurement technology

 RNA-Seq gives you reads
from the ends of a random
sample of fragments in RNA
your library sample

 Without additional data this cDNA TSI -

only gives information fragments === = =5

about relative abundances "

» Additional information, such ~ reads -
as levels of “spike-in”
transcripts, are needed for

14
absolute measurements



Issues with relative abundance
measures

Sample 1 Sample 1 Sample 2 Sample 2
absolute relative absolute relative
abundance abundance abundance abundance

« Changes in absolute expression of high expressors is a major factor

15
* Normalization is required for comparing samples in these situations



The basics of quantification
with RNA-Seq data

« For simplicity, suppose reads are of length one base
(typically they are > 35 bases)

transcripts reads
1 200 100 A
3 80
40

- What relative abundances would you estimate for

these genes?
- Relative abundance is relative transcript levels in the
cell, not proportion of observed reads

16



Length dependence

* Probability of a read coming from a transcript «

relative abundance x length
transcripts reads

200 100 A
- 00
80 60 C
40

probability of read from transcript 1
/ = (transcript 1 reads) / (total reads)

1

transcript 1 relative
abundance 100

S~ 200 _ L
1< 500 = 200
AN

transcript 1 length 17



Length dependence

* Probability of a read coming from a transcript «
relative abundance x length

transcripts reads
200
1 - 100 A
2 80 60 C
40
. 100 1 .
200 = (.25
1% 500 = 200 /i
. 60 1 .
200 =0.5
J2% %60 = 200 J2
A 40 1 normalize )
faoc 29 — f3 = 0.25

30 400 18



The basics of quantification
from RNA-Seq data

» Basic assumption:

0; = P(read from transcript i) = Z 17,4/

/\

expression level length
(relative abundance)

* Normalization factor is the mean length of
expressed transcripts

Z = Z’T‘ze;

19



The basics of quantification
from RNA-Seq data

« Estimate the probability of reads being generated
from a given transcript by counting the number of
reads that align to that transcript

g _ Ci— — # reads mapping to transcript i
N~ total # of mappable reads

« Convert to expression levels by normalizing by
transcript length

T; X e—,

(]

20



The basics of quantification
from RNA-Seq data

» Basic quantification algorithm

— Align reads against a set of reference
transcript sequences

— Count the number of reads aligning to each
transcript

— Convert read counts into relative expression
levels

21



Counts to expression levels

RPKM - Reads Per Kilobase per Million mapped
eads  RpKM £ | =10° x
Oor gene 1 = X IN

FPKM (fragments instead of reads, two reads per
fragment, for paired end reads)

TPM - Transcripts Per Million

(estimate of) TPM for isoform i = 10° x Z x

&
EN
Prefer TPM to RPKM because of normalization
factor

— TPM is a technology-independent measure (simply a
fraction) -




What if reads do not uniquely
map to transcripts?

* The approach described assumes that every
read can be uniquely aligned to a single
transcript

* This is generally not the case

— Some genes have similar sequences - gene
families, repetitive sequences

— Alternative splice forms of a gene share a
significant fraction of sequence

23



Alternative splicing

' splicing s
alternatively
. _ spliced

MRNASs
l translation ‘

* protein

] ’ isoforms




Multi-mapping reads in
RNA-Seq

Species Read length % multi-mapping reads
Mouse 25 17%
Mouse 75 10%
Maize 25 52%
Axolotl 76 23%
Human 50 23%

* Throwing away multi-mapping reads leads to
— Loss of information

— Potentially biased estimates of abundance 26




Distributions of alignment counts

Fraction of mapped reads

Fraction of mapped reads

1.0
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-

Mouse Liver

# of genes 1o which a read maps

Maize

DD=-—.—._=
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Fraction of mapped reads

Fraction of mapped reads
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0.0
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# of isoforms to which a read maps

Maize

g E 4 10 27

# of isoforms to which a read maps



What if reads do not uniquely
map to transcripts?

Multiread: a read that could have been derived from
multiple transcripts

transcripts reads
1 20 + 180 = 200 90A
20 +40 =60
2 40 C
° 40
30T

How would you estimate the relative abundances for

these transcripts?
28



Some options for
handling multireads

Discard multireads, estimate based on uniquely mapping reads only

Discard multireads, but use “unique length” of each transcript in
calculations

“Rescue” multireads by allocating (fractions of) them to the transcripts
— Three step algorithm
1. Estimate abundances based on uniquely mapping reads only

2. For each multiread, divide it between the transcripts to which it maps,
proportionally to their abundances estimated in the first step

3. Recompute abundances based on updated counts for each transcript 29



Rescue method example - Step 1

transcripts reads
1 - 200 90 A
40
30T
Step 1
90
runique _ 200 — 0.278

1 90 , 40 , 40
200 T 60 T 80
runique

unique _ () 412

A;Lnique — 0.309 30



Rescue method example - Step 2

transcripts reads
200 90A
1 60
2 40 C
’ 40
30T
Step 2
0.278
1°¢%¢ =90 + 30 = 102.1
1 X 0278 1 0.412
0.412
oot =40+ 30 = 57.9
°2 X 0278 + 0.412

cheseue — 40 4 0 = 40 .



Rescue method example - Step 3

transcripts reads
, 200 90 A
60
2 50 40 C
40
30T
Step 3
102.1
rrescue 200 _
1 — 1021_|_579_|_40_0'258
200 80
57.9
rrescue 60 _
2 — 102.1 , 57.9 , 40 — 0.488
200 " 60 T 80
40
rrescue 80 _
3 — 102.1 40 — 0.253 32

57 9
200 T T 80



An observation about the
rescue method

Note that at the end of the rescue algorithm, we
have an updated set of abundance estimates

These new estimates could be used to
reallocate the multireads

And then we could update our abundance
estimates once again

And repeat!

This Is the intuition behind the statistical

approach to this problem
33



RSEM (RNA-Seq by Expectation-Maximization) -
a generative probabilistic model

- Simplified view of the model (plate notation)
- Grey — observed variable

‘RNA-Seq gene expression estimation

* White — latent (UnObSGI"VGd) variables with read mapping uncertainty ”
Li, B., Ruatti, V., Stewart, R., Thomson,
oy J., Dewey, C.
start position Bioinformatics, 2010
number of reads _
\ \ Bayesian network
N hV

transcript probabilities
(expression levels) read sequence

_—
\ 0 L, Gn ’4/
wd a
transcript f

orientation

34



Expected read count
visualization

Scale 1 kbt |

1
chr9: 78327000! 78327500 78328000 78328500 78329000
8000 _ SRR065546
SRR065546 | | | |
8000 _ SRR065546_uniq

SRR065546_uniq

o A

n

0 - A_-L‘ AC .Ldvo._‘_.

arative Genomics

78329500

| ™

Eef1ail
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predicted expression level

100 10000

1

Improved accuracy over

unique and rescue

1

unique
80
oO
&
8o
o
o 90
&

100

10000

Mouse gene-level expression estimation

10000

100

rescue

1

100 10000

true expression level

10000

100

em

10000
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RNA-Seq summary

RNA-Seq is the preferred technology for
transcriptome analysis in most settings

The major challenge in analyzing RNA-Seq data:
the reads are much shorter than the transcripts
from which they are derived

Tasks with RNA-Seq data thus require handling
hidden information: which gene/isoform gave rise
to a given read

The Expectation-Maximization algorithm is

extremely powerful in these situations, e.g.,
RSEM 41



Recent developments in RNA-Seq

* Long read sequences: PacBio and Oxford Nanopore

« Single-cell RNA-Seq: review
— Observe heterogeneity of cell populations
— Model technical artifacts (e.g. artificial 0 counts)
— Detect sub-populations
— Predict pseudotime through dynamic processes
— Detect gene-gene and cell-cell relationships

 Alignment-free quantification:
— Kallisto

— Salmon
42


http://doi.org/10.1038/nature21350
http://robpatro.com/blog/?p=248
https://pachterlab.github.io/kallisto/
https://combine-lab.github.io/salmon/

Public sources of RNA-Seq data

* Gene Expression Omnibus (GEO):
http://www.ncbi.nlm.nih.gov/geo/

— Both microarray and sequencing data

« Sequence Read Archive (SRA):
http://www.ncbi.nlm.nih.gov/sra

— All sequencing data (not necessarily RNA-Seq)

* ArrayExpress:
https://www.ebi.ac.uk/arrayexpress/

— European version of GEO

« Homogenized data: MetaSRA, Tolil, recount2,
ARCHS?

43


http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/
http://metasra.biostat.wisc.edu/
https://xenabrowser.net/datapages/?host=https://toil.xenahubs.net
https://jhubiostatistics.shinyapps.io/recount/
https://amp.pharm.mssm.edu/archs4/

Interpolated Markov Models
for Gene Finding

Key concepts

the gene-finding task

the trade-off between potential predictive value and

parameter uncertainty in choosing the order of a Markov
model

iInterpolated Markov models

44



The Gene Finding Task

Given: an uncharacterized DNA sequence
Do: locate the genes in the sequence, including the

coordinates of individual exons and introns

DNA

ene gene
[ - [
I
Gene gtart _ Gene end
. donor acceptor donor T ---acceptor
gene Exonl Intronl Exon3
™ ’ ’ D e
kS ’ ’ W %5
T ’ S A A o
e ‘transcription .-~
\\‘s I, ’r” ’r"
o " N i .° .
Se / - oo
mRNA

protein

@ translation

45



Splice Signals Example

donor sites

5’ splice site

acceptor sites

3’ splice site

TTTTTTTTEI g

rrxrxlrllicoccccececC

e e————

A

. . -
ke — . . . . —

Figures from Yi Xing
exon

* There are significant dependencies among non-adjacent
positions in donor splice signals

 Informative for inferring hidden state of HMM

46



Sources of Evidence for Gene Finding

« Signals: the sequence signals (e.g. splice junctions)
iInvolved in gene expression (e.g., RNA-seq reads)

« Content: statistical properties that distinguish
protein-coding DNA from non-coding DNA (focus in
this lecture)

« Conservation: signal and content properties that are
conserved across related sequences (e.qg.
orthologous regions of the mouse and human
genome)

47



Gene Finding: Search by Content

* Encoding a protein affects the statistical properties of
a DNA sequence

— some amino acids are used more frequently than
others (Leu more prevalent than Trp)

— different numbers of codons for different amino
acids (Leu has 6, Trp has 1)

— for a given amino acid, usually one codon is used
more frequently than others

* this is termed codon preference
* these preferences vary by species

48



Codon Preference Iin E. Coll

AA codon /1000
Gly GGG 1.89
Gly GGA 0.44
Gly GGU 52.99
Gly GGC 34.55
Glu GAG 15.68
Glu GAA 57.20
Asp GAU 21.63

Asp GAC 43.26



Reading Frames

* A given sequence may encode a protein in any of the
six reading frames (three on each strand)

GCTACGGAGCTTCGGAGTEC
CGATGCCTCGAAGCCTCG

50



Open Reading Frames (ORFs)

 An ORF is a sequence that
— starts with a potential start codon (e.g., ATG)

— ends with a potential stop codon, in the same
reading frame (e.q., TAG, TAA, TGA)

— doesn’t contain another stop codon in-frame
— and is sufficiently long (say > 100 bases)

N £

GTTATGGC CT +¢ TCGTGATT

* An ORF meets the minimal requirements to be a
protein-coding gene in an organism without introns

« NHGRI ORF

51


https://www.genome.gov/genetics-glossary/Open-Reading-Frame

Markov Models & Reading Frames

« Consider modeling a given coding sequence

* For each “word” we evaluate, we'll want to consider its
position with respect to the reading frame we’re assuming

reading frame

)

GCTACGGAGCTTCGGA AGC

GCTACG G is in 3@ codon position
CTACGG G is in 1t position
T A C G G A| Aisin 2 position

« Can do this using an inhomogeneous model o



Inhomogeneous Markov Model

Homogenous Markov model: transition probability
matrix does not change over time or position

Inhomogenous Markov model: transition probability
matrix depends on the time or position

Remeber

P(X,Y, Z2)=P(X|Y, Z)"P(Y, Z) = P(X]| Y, Z) * P(Y | Z) * P(Z)

53



Higher Order Markov Models

« Higher order models remember more “history”

— n-order P(x, Ix,_,x,_,,....x)=P(x; I x_;,....x,_ )
« Additional history can have predictive value
 Example:

— predict the next word in this sentence fragment
“...you__" (are, give, passed, say, see, too, ...?)
— now predict it given more history

7

“...can you

7

“...say can you

)

“...oh say can you




A Fifth Order Inhomogeneous
Markov Model

AAAAA

CTACA

CTACC

start

CTACG

CTACT

GCTAC

TTTTT

position 2

P(x, | x_s,..., X;_,, pOSition)

99



AAAAA

AAAAA

A Fifth Order Inhomogeneous
Markov Model

CTACA

AAAAA

start

CTACC

CTACA

CTACG

CTACC

CTACA

CTACT

CTACG

CTACT

TACAA

GCTAC

TACAC

TACAG

GCTAC

TACAT

TTTTT

position 2

TTTTT

position 3

TTTTT

Trans.
to states
iIn pos. 2

position 1 s



Selecting the Order of a
Markov Model

« But the number of parameters we need to estimate
grows exponentially with the order

— for modeling DNA we need O(4"*') parameters
for an nth order model

* The higher the order, the less reliable we can expect
our parameter estimates to be

« Suppose we have 100k bases of sequence to
estimate parameters of a model

— for a 2" order homogeneous Markov chain, we’d
see each history 6250 times on average

— for an 8™ order chain, we’d see each history ~ 1.5

times on average .



Interpolated Markov Models

« The IMM idea: manage this trade-off by interpolating
among models of various orders

« Simple linear interpolation:
Pt (65 1 X505 %) = Ao P(X;)
+ 4, P(x; | x,_))

+ﬂ“nP(xi |xi—n"'°’xi—1)
. where Z/Il.:l

58



Interpolated Markov Models

* We can make the weights depend on the history

— for a given order, we may have significantly more
data to estimate some words than others

* (General linear interpolation

P (X [ Xi_ysees X)) = A P(X)
+ A4 () P(x; | x,_)

A is a function of /4_;” (x

the given history I—n ""’xi—l)P(xi | Xion 9"'9xi—1)

59



The GLIMMER System

[Salzberg et al., Nucleic Acids Research, 1998]

« System for identifying genes in bacterial genomes

« Uses 8" order, inhomogeneous, interpolated Markov
models

Matt MacManes
@ . Follow | v
. @macmanes

Did people really stop developing ab initio
gene predictors in like 20097

9:40 AM - 29 Dec 2017

Pt Titus Brown @ctitusbrown - 29 Dec 2017 v
Replying to @macmanes

| think so. From what | recall, bacterial gene prediction is 99% accurate/sensitive,
and euk gene prediction is horrendously inaccurate so => mRNAseq and
homology methods took over. 60




IMMs in GLIMMER

 How does GLIMMER determine the A values?

» First, let's express the IMM probability calculation
recursively

PIMM,n (X, | X ppeeen X)) =

A (X s X )P(X | X, ey x,_ )+

[1=A, (x5 X, )]PIMM,n-l (X, | X, ppseer Xip)

. Letc(x,_ ,...,x, ;) be the number of times we see the
history X._,...,X;_; in our training set

A (x X, )=1 1 c(x ,X,_)>400

l'_n,... i_n,...

61



IMMs in GLIMMER

 If we haven’t seen X,_,,---sX;_; more than 400 times,
then compare the counts for the following:

nth order history + base (n-1)th order history + base

X s Xi 150 X ipseeesXi o0
X s Xi |»C X o ipseees X |5 C
XicnsersXi15 8 XinglooeoXip 8
X o geees X g5l X o ysees Xi 15l

 Use a statistical test to assess whether the
distributions of X; depend on the order

62



IMMs in GLIMMER

nth order history + base (n-1)th order history + base

X seesX; 150 X o iqseeesX; 150
X seeesX; 15C X 1509 X; 15C
xi—n’“'ﬂxi—lﬂg xi—n+19'“9xi—19g
X o geees X 151 X o gseers Xi 15l

Null hypothesis in ¥ test X; distribution is
iIndependent of order

Define d =1— pvalue
If d is small we don’t need the higher order history

63



IMMs in GLIMMER

» Putting it all together

-

] if c¢(x,_,...,x, ;) >400
2 )= ddx X)) peeirg > 05
400
0 otherwise

\

where d €(0,]1)

* why 4007

- “gives ~95% confidence that the sample
probabilities are within £0.05 of the true
probabilities from which the sample was taken” &4



IMM Example

* Suppose we have the following counts from our training set

ACGA 25 CGA 100 GA 175
ACGC 40 CGC 90 GC 140
ACGG 15 CGG 35 GG 65
ACGT 20 CGT 75 GT 120
100 « . 300 ., 500

x2 test: d=0.857  x?test: d=0.140

As(ACG) = 0.857 x 100/400 = 0.214
A(CG) =0 (d<0.5, ¢(CG)<400)
M(G) =1 (c(G)> 400)
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IMM Example (Continued)

» Now suppose we want to calculate Py (T | ACG)

Pooi (T G) = A (G)P(T | G) + (1= 4,(G))Pranio(T)
=P(T|G)

Pyio(T | CG) = 4,(CG)P(T | CG) + (1 2,(CG))Poypy (T | G)
=P(T|G)
Pyis(T | ACG) = ,(ACG)P(T | ACG)+ (1= 4,(ACG))Pyypy,(T | CG)
=0.214x P(T| ACG)+(1-0.214)x P(T | G)
=0.214x0.2+(1-0.214)x0.24
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Gene Recognition in GLIMMER

« Essentially ORF classification
— Train and estimate IMMs
 Foreach ORF

— calculate the probability of the ORF sequence in
each of the 6 possible reading frames

— If the highest scoring frame corresponds to the
reading frame of the ORF, mark the ORF as a gene

* For overlapping ORFs that look like genes
— score overlapping region separately
— predict only one of the ORFs as a gene
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Gene Recognition in GLIMMER

Stop codons (TAA, TAG, TGA) (long hash marks)
rt c donT(AT 1G, TT hort hash marks)
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Low scoring ORF

High scoring ORF

Six possible frames


http://manatee.sourceforge.net/jcvi/pdf/overview.pdf

GLIMMER Experiment

« 8 order IMM vs. 5" order Markov model
* Trained on 1168 genes (ORFs really)
* Tested on 1717 annotated (more or less known) genes
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GLIMMER Results

TP FN FP & TP?
Model Genes Genes Additional
found missed genes
GLIMMER IMM 1680 (97.8%) 37 209
5th_.Order Markov 1574 (91.7%) 143 104

The first column indicates how many of the 1717 annotated genes in H.influenzae
were found by each algorithm. The ‘additional genes’ column shows how many extra
genes, not included in the 1717 annotated entries, were called genes by each method.

 GLIMMER has greater sensitivity than the baseline
 It's not clear whether its precision/specificity is better
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