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• Introduction on single cell RNA 
sequencing 

• Single cell RNA sequencing (scRNA-seq) 
data processing

• scRNA-seq data analysis 
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Gene expression and regulation

transcription

DNA
Gene

translation
RNA

Protein
Central dogma

Gene regulation: which & how genes express?

Cell type

nerve skin disease

Gene expression levels (e.g., values to quantify 
RNA abundances) 

Identical DNA but different 
gene expression
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Why study single cells?
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Cells are our core constituents, are classified by characteristic molecules, structures, and functions 

https://www.youtube.com/watch?v=PRjX3-m16cw



Why study single cells? 
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Genotype Cell Phenotype

Cells are key intermediate from genotype to phenotype, e.g., essential functional dissection of 
genetic variants

https://www.youtube.com/watch?v=PRjX3-m16cwhttps://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf



Sequencing RNAs in singe cells
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üCore technology üComputationüSample prep

2012: 18 cells 2020: ~100,000 cells

https://www.youtube.com/watch?v=PRjX3-m16cw



Evolution of single cell sequencing
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Kolodziejczyk et al, Mol Cell (2015)
Svensson V, Vento-Tormo R, Teichmann SA. Nat Protoc. 2018 Apr;13(4):599-604

• High-throughput technologies enable the profiling of thousands of cells in 
parallel, providing an unbiased view of the heterogeneity of single cells within 
a population. Fan et al., 2015

• Cell numbers reported in representative publications by publication date



Single cell RNA sequencing 
(scRNA-seq) technology
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inDrops 10x Genomics Drop-seq Seq-well (Honeycomb) SMART-seq

Cell capture 
efficiency ~70-80% ~50-70% ~10% ~80% ~80%

Time to capture
10k  cells ~30min 10min 1-2 hours 5-10min --

Encapsulation type
Droplet Droplet Droplet Nanolitre well Plate-based

Library prep CEL-seq
Linear amplification by IVT

SMART-seq  
Exponential PCR 

based  
amplification

SMART-seq  
Exponential PCR 

based  amplification

SMART-seq  
Exponential PCR 

based  
amplification

SMART-seq  Exponential 
PCR based  amplification

Commercial Yes Yes -- Yes (Summer 2020) Yes

Cost (~$ per cell) ~0.06 ~0.2 ~0.06 ~0.15 1

Strengths • Good cell capture

• Cost-effective

• Real-time monitoring
• Customizable

• Good cell capture

• Fast and easy to run

• Parallel sample collection
• High gene / cell counts

• Cost-effective

• Customizable

• Good cell capture

• Cost-effective

• Real-time monitoring
• Customizable

• Good cell capture

• Good mRNA capture

• Full-length transcript
• No UMI

Weaknesses Difficult to run Expensive Difficult to run & low

cell  capture

efficiency

Available Soon Expensive

https://github.com/hbctraining/scRNA-seq/blob/master/slides/Single_Cell_2_27_20.pdf



Bulk vs scRNA-seq
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Bulk RNA-seq

scRNA-seq

average  
expression 

level

Population 1

Population 2

Population 3
Population 4

distribution of 
expression 

levels

• quantifying expression signatures from ensembles
• insufficient for studying heterogeneous system

• inference of gene regulatory networks across the cells
• heterogeneity of cell responses
• cell type identification



• Introduction on single cell RNA sequencing 
• Single cell RNA sequencing (scRNA-seq) 

data processing
• scRNA-seq data analysis 
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Single-cell RNA sequencing 
(scRNA-seq) process

11Lafzi et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies, Nature Protocols 2018 (https://doi.org/10.1038/s41596-018-0073-y)

• Step1: Sample preparation

• Step2: Single-cell RNA sequencing

• Step3: Data processing 

• Step4: Data analysis



• Step 1 - Sample preparation: cells are 
physically separated into a single-cell 
solution from which specific cell types 
can be enriched or excluded

scRNA-seq process

12Lafzi et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies, Nature Protocols 2018 (https://doi.org/10.1038/s41596-018-0073-y)

• Step 2 - Single-cell RNA 
sequencing 



scRNA-seq process

13Lafzi et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies, Nature Protocols 2018 (https://doi.org/10.1038/s41596-018-0073-y)

• Step 3 - Data processing
Ø Unique molecular identifier (UMI)
Ø Gene counts
Ø Drop-outs in single cell
Ø Imputation method: MAGIC



Unique molecular identifier 
(UMI)

• UMIs are short (4-10bp) random barcodes added to transcripts during 
reverse-transcription. 
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Biased paired-end reads

http://data-science-sequencing.github.io/Win2018/lectures/lecture16/
https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf

Grouping barcodes to assign reads to cells

https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf
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• They enable sequencing reads to be assigned to individual transcript 
molecules and thus the removal of amplification noise and biases from 
scRNA-Seq data

• They reduce the amplification noise by allowing (almost) complete de-
duplication of fragments

http://data-science-sequencing.github.io/Win2018/lectures/lecture16/
https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf

Unique molecular identifier 
(UMI)

https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf


Gene Counts
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• In each gene, within each cell, the total number of unique UMI is counted 
and reported as the number of transcripts of that gene for a given cell.

http://data-science-sequencing.github.io/Win2018/lectures/lecture16/
https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018
/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf

Hundreds of millions of reads

cDNA alignment to 
Genome and group 

Results by cell

Thousands of cells

Count unique UMIs 
for each gene in each cell

Create digital 
expression matrix

Gene counts matrix

https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf
https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf


Drop-outs in single cell

17Kharchenko, P., Silberstein, L. & Scadden, D. Bayesian approach to single-cell differential expression analysis. Nat Methods 11, 740–742 (2014).

• a gene is observed at a moderate or high expression level in one cell 
but is not detected in another cell

Why do dropouts occur in single cell?
• technical artifacts
• cell type differences

• statistical sampling
• biological factors
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What should we do about dropouts?

• Ignore zero inflation
• Preprocess/reduce dimensions
• Impute scRNA-seq gene count matrix before analysis

Imputation Methods

• MAGIC
• Droplet
• DrImpute
• scDoc

Why do we need imputation methods? 
• Downstream analyses relying on the accuracy of 
     gene expression measurements

Drop-outs in single cell
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http://jsb.ucla.edu/sites/default/files/scImpute.pdf
van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, Bierie B, Mazutis L, Wolf G, Krishnaswamy S, Pe'er D. Recovering Gene Interactions from 
Single-Cell Data Using Data Diffusion. Cell. 2018 Jul 26;174(3):716-729.e27. doi: 10.1016/j.cell.2018.05.061. Epub 2018 Jun 28. PMID: 29961576; PMCID: PMC6771278.

• Denoise high-dimensional scRNA-seq data
• Impute missing expression values by sharing information across 

similar cells

• Similarity between two cells 𝐴!" = 	𝑒
#(

!"#$%&'(")
* )+

• Transform the similarity matrix 𝑨 into a Markov transition matrix 𝑴
• Raise the Markov matrix to the power of 𝑡: 𝑴&, which determines 

the weights of cells

MAGIC
Markov affinity-based graph imputation of cells



scRNA-seq process

20Lafzi et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies, Nature Protocols 2018 (https://doi.org/10.1038/s41596-018-0073-y)

• Step 4 - Data analysis
Ø Dimensionality reduction
Ø Clustering and marker identification
Ø Trajectory analysis



• Introduction on single cell RNA sequencing 
• Single cell RNA sequencing (scRNA-seq) 

data processing
• scRNA-seq data analysis 
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scRNA-seq data analysis 
• Introduction of single cell analysis
• Dimensionality reduction

• Linear: PCA
• Non-linear: t-SNE, UMAP

• Cell clustering
• K-means
• hierarchical clustering
• graph-based clustering

22



• Single-cell data opens the door to several types of biological questions:
– What cell types exist within a population of cells in a particular sample? 

– What does this high-resolution view of cellular transitions tell us about switches in cell 
states? 

– How can gene regulatory networks drive cell types or states? 

Why single-cell analysis ?

23Kolodziejczyk et al, Mol Cell (2015)



scRNA-seq analysis

24Luecken, MD and Theis, FJ. Current best practices in single‐cell RNA‐seq analysis: a tutorial, Mol Syst Biol 2019 (doi: https://doi.org/10.15252/msb.20188746)

Cell-level analysis
• Marker gene identification
• Cluster analysis
• Trajectory analysis

Gene-level analysis
• Single-cell differential expression analysis
• Gene set analysis
• Gene regulatory networks

Python for scRNA-seq data analysis

https://doi.org/10.15252/msb.20188746


Single-cell RNA sequencing 
analysis 

• Introduction of single cell analysis
• Dimensionality reduction

• Linear: PCA
• Non-linear: t-SNE, UMAP

• Cell clustering
• K-means
• hierarchical clustering
• graph-based clustering
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Dimensionality Reduction
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https://doi.org/10.3389/fgene.2021.646936
https://www.biorxiv.org/content/10.1101/241646v1.full
Luecken, MD and Theis, FJ. Current best practices in single‐cell RNA‐seq analysis: a tutorial, Mol Syst Biol 2019 (doi: https://doi.org/10.15252/msb.20188746)

• Dimensionality reduction announces that cells could cluster together into groups.

https://doi.org/10.3389/fgene.2021.646936
https://www.biorxiv.org/content/10.1101/241646v1.full
https://doi.org/10.15252/msb.20188746


Dimensionality Reduction
• Reduce noise, sparsity 
• Easier for visualization and processing
• Linear methods: 

– PCA (principal component analysis)

• Non-linear methods: 
– t-SNE
– UMAP

27
https://doi.org/10.3389/fgene.2021.646936
https://www.biorxiv.org/content/10.1101/241646v1.full

https://doi.org/10.3389/fgene.2021.646936


PCA
Principal component analysis
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• It is a linear algebraic method of dimensionality reduction
• Any matrix can be decomposed as a multiplication of other matrices 
• PC1 represents the most of variance for the data, then PC2, PC3

https://github.com/NBISweden/excelerate-scRNAseq

1s
t  PC

2 nd PC
Reduce D genes to d PCs of 
cells, where d<<D 



PCA of Peripheral Blood 
Mononuclear Cells (PBMC)

29
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Limitation of PCA
• PCs represent linear combination of individual features (e.g., genes) 
• PCA fails to find non-linear structure in the data 

https://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/slides/ManifoldLearning.pdf

High dimensions Low dimensions



Manifold learning

A 𝑑 dimensional manifold 𝑀 is embedded in a 𝑚 dimensional 
space, and there is an explicit mapping 𝑓:	ℝ'→ℝ(  where 𝑑	 ≤ 	𝑚. 
Given Sample 𝑥! ∈ ℝ'  with noise

𝑦! = 𝑓(𝑥!) 
       → find 𝑓(. ) or 𝑦! 	from given 𝑥! 	

𝑓(. )

𝑦!

Parametric & generalizable (e.g., 
linear manifold learning)

Nonparametric & nongeneralizable (e.g., 
nonlinear manifold learning)

• A manifold is a topological space that locally resembles Euclidean 
space near each point

31

𝑥!
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t-SNE
t-Stochastic Neighbor Embedding

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008
https://nbviewer.org/github/YeoLab/single-cell-bioinformatics/tree/master/
https://mit6874.github.io/assets/sp2020/slides/L11_PCA_tSNE_Autoencoders.pdf

• t-SNE is a manifold embedding algorithm for nonlinear dimensionality 
reduction (”keep manifold structures on low dimension space”)

https://nbviewer.org/github/YeoLab/single-cell-bioinformatics/tree/master/


t-SNE
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• Given a collection of points 𝑋 = 𝑥) , … , 𝑥* ⊂ 𝑅( , find a collection of points 
𝑌 = 𝑦) , … , 𝑦* ⊂ 𝑅(, , where	𝑑 ≫ 𝑑′. 𝑝!" and 𝑞!" measure the conditional 
probability that a point j would pick point i as it’s nearest neighbor, in high (p) and 
low (q) dimensional space, respectively.

High dimension

= 𝑝!"
j

i
j

i

Low dimension

= 𝑞!"

𝑥! 𝑥" 𝑦! 𝑦"

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008

We want to learn



Similarity matrix at high dimension 
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High dimension

=	𝑝!"j
i

where τi2 is the variance for the Gaussian distribution centered around xi 

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008
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Similarity matrix at low dimension 

j

i

Low dimension

=	𝑞!"

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008
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Cost Function 
Kullback-Leibler divergence

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008

• Find optimal {yi}: Minimize a single Kullback-Leibler divergence between 
a joint probability 𝑃, in the high-dimensional space and a joint probability 
𝑄, in the low-dimensional space.

• The gradient is given by

• The result of this optimization is a map that reflects the similarities 
between the high-dimensional inputs.



Summary of t-SNE

38L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008

• t-SNE minimizes the divergence between two similarity 
distributions: 
– pairwise similarities of the input data points on the high 

dimensional space {pij}
– pairwise similarities of the corresponding low-

dimensional points {qij}
Main steps for t-SNE

1. Construct a similarity matrix over pairs of high-dimensional points 
• Similar data points are assigned a higher probability,  while dissimilar points 

are assigned a lower probability. 

2. Define a similarity matrix in the low-dimensional embedding space

3. Minimize the 𝐾𝐿 divergence between two similarity distributions using 
gradient descent to find optimal low dimensional coordinates of data points



Limitation of t-SNE

39https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668

• t-SNE mainly preserves local similarity structure of data, not 
global similarity.

• Only within cluster distances are meaningful while between 
cluster similarities are not guaranteed.



UMAP
Uniform Manifold Approximation and Projection

40

• Instead of randomly assigning points as in t-SNE, UMAP 
constructs a high dimensional graph representation of the 
data and then optimizes a low-dimensional graph to be as 
structurally similar as possible

• UMAP could preserve both global and local data structures 

• https://www.youtube.com/watch?v=nq6iPZVUxZU
• https://nbisweden.github.io/excelerate-scRNAseq/session-dim-reduction/lecture_dimensionality_reduction.pdf 
• https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
• https://pair-code.github.io/understanding-umap/

UMAP on MNIST dataset t-SNE on MNIST dataset 

https://www.youtube.com/watch?v=nq6iPZVUxZU
https://nbisweden.github.io/excelerate-scRNAseq/session-dim-reduction/lecture_dimensionality_reduction.pdf
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
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L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008
https://pair-code.github.io/understanding-umap/supplement.html

1. Construct a weighted k nearest neighbors graph for 
defining a similarity matrix in high-dimensional space
• The edge weights represent the likelihood that two data points 

are connected (i.e., “similarity”)

2. Define a similarity matrix in low-dimensional space

3. Minimize the cross-entropy cost function at each point 
using gradient descent to find the most similar graph in 
lower dimensions

Main steps for UMAP
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Similarity matrix at high dimension 
• 𝜌!, the distance from xi to the k nearest neighbors in high 

dimension (e.g., kNN graph)

• UMAP uses an exponential probability distribution in high dimension

• The symmetrization of high dimension similarity score and the definition of 
number of nearest neighbors

Raw distance Distance to nearest neighbor

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668 
arXiv:1802.03426

𝑝"|! =	𝑒
$
% &!,&" $	)!

*!

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://arxiv.org/abs/1802.03426
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Similarity matrix at high dimension 
• For each data point, it has a locally adaptive exponential 

kernel, so the distance metric varies from point to point.

Distance to nearest neighbor
Raw distance

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668 
arXiv:1802.03426
https://www.youtube.com/watch?v=jth4kEvJ3P8

Graph 𝑝"|! =	𝑒
$	
% &!,&" $	)!

*!

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://arxiv.org/abs/1802.03426
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Cost Function
binary cross-entropy (CE)

• The gradient of the CE to find optimal {yi}

• Cross-entropy cost function makes UMAP to 
capture the global and local data structures 

arXiv:1802.03426
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668 

• Similarity matrix at low dimension 

the family of curves 1/𝑎×𝑦+, for modelling distance probabilities 
in low dimensions, 𝑎 and 𝑏 are hyperparameters

https://arxiv.org/abs/1802.03426
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668


45https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html

UMAP examples



Single-cell RNA sequencing 
analysis 

• Introduction of single cell analysis
• Dimensional reduction

• Non-linear: t-SNE, UMAP
• Linear: PCA

• Cell clustering
• K-means
• hierarchical clustering
• graph-based clustering

46



Cell clustering

47

• Feature selection and dimensionality reduction extract the most 
informative genes and represented features from background noise, 
respectively

• Cell–cell distances are then calculated in the low dimensional space for 
clustering cells to clusters

Kiselev, V.Y., Andrews, T.S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20, 273–282 (2019). https://doi.org/10.1038/s41576-018-0088-9



Clustering methods for scRNA-seq

48

Clustering methods:
• K-means
• hierarchical clustering
• graph-based clustering

Tools for graph-based clustering:
• Seurat: Louvain, Leiden, SLM
• igraph:fast greedy, Louvain, optimal, walktrap, spinglass, infomap

Kiselev, V.Y., Andrews, T.S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20, 273–282 (2019). https://doi.org/10.1038/s41576-018-0088-9



Graph-based clustering
• One of most popular clustering algorithms in scRNA-seq data analysis

49

• Freytag, Saskia, Luyi Tian, Ingrid Lönnstedt, Milica Ng, and Melanie Bahlo. 
2018. “Comparison of Clustering Tools in R for Medium-Sized 10x Genomics 
Single-Cell Rna-Sequencing Data.” F1000Research 7. Faculty of 1000 Ltd.

• Wasserman, S. & Faust, K. (1994) Social Network Analysis (Cambridge Univ. 
Press, Cambridge, U.K.).

• https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-
workshop/public/clustering-and-cell-annotation.html#ref-freytag2018comparison

• Node  -> cell
• Edge -> similarity 

between two cells

Ø Louvain community 
detection: (Blondel et al. 2008)

Ø Leiden community detection: 
(Traag, Waltman, and Eck 2019)

https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/clustering-and-cell-annotation.html
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/clustering-and-cell-annotation.html
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i, j
∑

normalization
m: total number of edges

kik j
2m

= pij=expected edge weight that 
would go between i and j

sum over nodes within a 
group (module) 

edge weight between 
nodes i and j

Modularity Q: measurement on strength of network division 

low high Brede, Europhysics Letters, 2010.

Newman, PNAS, 2006.

Clustering goal: assign each node a module 
to maximize “modularity” as an objective function

 (module is a group of highly connected nodes)

Modularity



Louvain community detection

51
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html#ref-freytag2018comparison
https://www.youtube.com/watch?v=QNv7rKWCgM8

• Start with every node in its own community (i.e., module/cluster)
• Step1: Modularity optimization

• Order the nodes and for each node 𝑖, move 𝑖 to the community of neighbor 𝑗 that leads 
to maximum ∆𝑄

• If all ∆𝑄 < 0 the 𝑖 remains in its current community
• Repeatedly cycle through all nodes until ∆𝑄 = 0 

• Step2 : Community aggregation
• Create a weighted network of communities from Step1
• Nodes : communities in Step1
• Edge weights : sum of weights of edges between communities 
• Edges within a community become two self-loops 

• Repeat:  Apply Step1 & Step2 to resulting network, and so on until ∆𝑄 = 0 

https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html


Examples of Louvain clustering
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Belgian mobile phone network
• 2M nodes
• Red nodes:
     French speakers
• Green nodes:
     Dutch speakers

Blondel et al.2008



Examples of Louvain clustering

53

The Louvain algorithm clusters 
millions of cell with reasonable 
computational complexity. 

Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15:e8746
Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, Zhou Y (2020) Construction of a human cell landscape at single-cell level. Nature 581:303–309. https://doi.org/10.1038/s41586-020-2157-4
Seow, J.J.W., Wong, R.M.M., Pai, R. et al. Single‐Cell RNA Sequencing for Precision Oncology: Current State-of-Art. J Indian Inst Sci 100, 579–588 (2020). https://doi.org/10.1007/s41745-020-00178-1

https://doi.org/10.1038/s41586-020-2157-4

