BMI/CS 776 Lecture #18 Pattern matching Locality-sensitive hashing

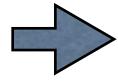
Colin Dewey March 27, 2008

Exact vs inexact matching

- Exact matching
 - Good for highly-similar sequences, or for locating highly-conserved short substrings
 - As sequences diverge, exact matching must use shorter seeds, resulting in low specificity
 - Can be done very efficiently suffix trees/arrays
- Inexact matching
 - Better for diverged sequences
 - Much harder than exact matching

Inexact matching problem

today



- Find all pairs of d-mers that differ in at most r positions
- Or, find all pairs of d-mers that have edit distance less than E

Locality-sensitive hashing

- Problem:
 - Given set of high-dimensional data points
 - Want to find all similar points, or find closest points to a given query point
- Locality-sensitive hashing (Indyk & Motwani, 1998):
 - Hashing scheme with similar points more likely to hash to the same bin
 - Randomized algorithm

(r, ε)-Neighbor problem

- Given:
 - P: set of elements from set S
 - D: distance function on set S
 - q: query element
- Determine whether:
 - exists p in P such that $D(q,p) \le r$
 - return a point p' such that $D(q, p') < r(1 + \varepsilon)$
 - or all p in P have $D(q,p) \ge r(1 + \epsilon)$

(rl,r2,pl,p2)-sensitive hash families

Definition 1 A family \mathcal{H} of functions $h: S \to U$ is (r_1, r_2, p_1, p_2) -sensitive for $D(\cdot, \cdot)$ if $\forall p, q \in S$

- 1. if $p \in \mathcal{B}(q, r_1)$ then $\mathbb{P}_{\mathcal{H}}[h(q) = h(p)] \geq p_1$
- 2. if $p \notin \mathcal{B}(q, r_2)$ then $\mathbb{P}_{\mathcal{H}}[h(q) = h(p)] \leq p_2$

where
$$\mathcal{B}(q,r) = \{p : D(p,q) \le r\}$$

- Useful families have $p_1 > p_2$ and $r_1 < r_2$
- The closer the points, the higher the chance of collision via the hash function

(rl,r2,pl,p2)-sensitive hash family example

$$S = H^{d'}$$
 (d'-dimensional Hamming cube)
 $D(p,q) = d_H(p,q)$ (Hamming distance)
 $\mathcal{H}_{d'} = \{h_i : h_i((b_1,\ldots,b_{d'})) = b_i, \text{ for } i = 1,\ldots,d'\}$

$$\mathcal{H}_{d'}$$
 is $\left(r, r(1+\epsilon), 1-\frac{r}{d'}, 1-\frac{r(1+\epsilon)}{d'}\right)$ -sensitive, $\forall r, \epsilon$

LSH functions

Choose l functions g_1, \ldots, g_l , where g are of the form:

$$g_i(p) = (h_{i_1}(p), h_{i_2}(p), \dots, h_{i_k}(p))$$

where h_{i_1}, \ldots, h_{i_k} chosen at random from \mathcal{H} with replacement

LSH preprocessing

```
Algorithm Preprocessing
Input A set of points P,
  l (number of hash tables),
Output Hash tables \mathcal{T}_i, i = 1, \ldots, l
Foreach i = 1, \ldots, l
  Initialize hash table \mathcal{T}_i by generating
  a random hash function g_i(\cdot)
Foreach i = 1, \ldots, l
  For each j = 1, \ldots, n
     Store point p_i on bucket g_i(p_i) of hash table \mathcal{T}_i
```

(Gionis, 1999)

LSH approximate nearest neighbor

```
Algorithm Approximate Nearest Neighbor Query
Input A query point q,
  K (number of appr. nearest neighbors)
Access To hash tables \mathcal{T}_i, i = 1, \ldots, l
  generated by the preprocessing algorithm
Output K (or less) appr. nearest neighbors
S \leftarrow \emptyset
Foreach i = 1, \ldots, l
  S \leftarrow S \cup \{\text{points found in } g_i(q) \text{ bucket of table } \mathcal{T}_i\}
Return the K nearest neighbors of q found in set S
/* Can be found by main memory linear search */
```

(Gionis, 1999)

LSH (r, E)-Neighbor correctness conditions

$$P' = \{p' : p' \in P, d(q, p') > r_2 = r(1 + \epsilon)\}$$

LSH algorithm solves (r, ϵ) -Neighbor problem if both:

P1 If there exists p^* s.t. $p^* \in \mathcal{B}(q, r_1)$, then $g_j(p^*) = g_j(q)$ for some $j = 1, \ldots, l$

P2 The total number of hash table blocks referenced by q and containing only points from P' is less than cl, for some constant c.

LSH (r, E)-Neighbor correctness

Theorem 1 For a (r_1, r_2, p_1, p_2) -sensitive family \mathcal{H} , if we set $\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$, $k = \log_{1/p_2}(n/B)$ and $l = (\frac{n}{B})^{\rho}$, then P1 and P2 hold with probability at least $\frac{1}{2} - \frac{1}{e} > 0.132$

"constant probability" - does not change with input size n

For proof, see (Gionis, 1999)

Randomized algorithms

- Given an algorithm A_1 that succeeds with probability p_1
- Algorithm A₂, which runs A₁ t times, succeeds with probability $p_2 = I - (I - p_1)^t$
- Can make p_2 as big as we like
- For t > 32, LSH (r, ε) -Neighbor succeeds with probability > 0.99

Complexity results

- LSH (r, ε)-Neighbor used to solve ε-Nearest Neighbor Search (ε-NNS) problem
- $O(dn^{1/(1+\epsilon)})$ query time (sublinear!) for all ϵ
- $O(n^{1+1/(1+\epsilon)} + nd)$ preprocessing time

LSH for sequence comparison

- Buhler, 2001
- Points are d-mers over some alphabet
- Comparing all d-mers at once, not just one query d-mer against all others
- Hash function *f*:
 - pick k indices $i_1,...,i_k$ from $\{1,...,d\}$
 - $f(s) = (s[i_1], s[i_2], ..., s[i_k])$

(rl,r2,pl,p2)-sensitive property

• If s_1 and s_2 differ by at most $r_1 = r$ positions then,

$$\mathbb{P}[f(s_1) = f(s_2)] \ge p_1 = \left(1 - \frac{r}{d}\right)^k$$

• If not, s_1 and s_2 differ by at least $r_2 = r + 1$ positions and

$$\mathbb{P}[f(s_1) = f(s_2)] \le p_2 = \left(1 - \frac{r+1}{d}\right)^{\kappa}$$

LSH-ALL-PAIRS

- Input: Set C of sequences of total length N
- Output: All pairs of d-mers that differ by no more than r substitutions
- Algorithm: Iterate ℓ times:
 - Choose random LSH function (choose k indices)
 - Partition d-mers by hash value
 - In each partition, compare all *d*-mers, output those that differ in no more than *r* positions

False-negative rate

• Typically set ℓ and k such that expected false negative rate is sufficiently small (e.g., 0.05)

$$\rho_{fn} \le \left[1 - \left(1 - \frac{r}{d}\right)^k\right]^\ell$$

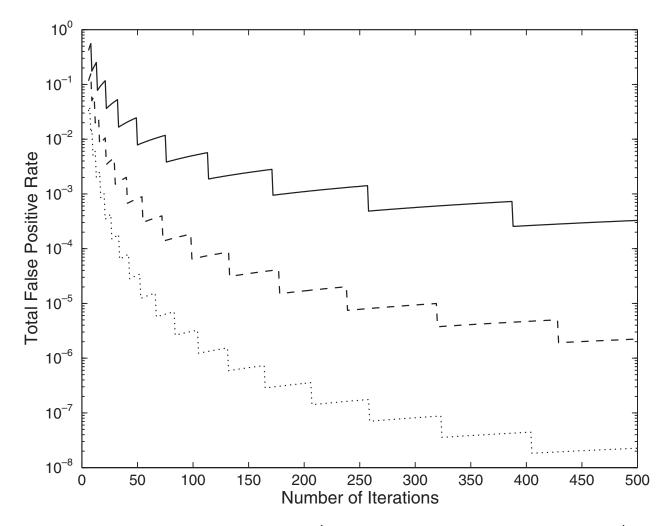
$$k \le \frac{\log\left(1 - \rho_{fn}^{1/\ell}\right)}{\log\left(1 - \frac{r}{d}\right)}$$

False positive rate

- False positive rate: fraction of *d*-mers that we compare (because they hash to the same value) that are not similar enough
- For two unrelated random d-mers, assume chance of match at any position is Φ
- Chance that unrelated d-mers differ by t

substitutions:
$$\beta_{1-\phi,d}(t) = \binom{d}{t}(1-\phi)^t\phi^{d-t}$$
 • False positive rate:
$$\rho_{fp} = \ell \sum_{t=r+1}^d \beta_{1-\phi,d}(t) \left(1-\frac{t}{d}\right)^k$$

Tradeoffs



Fixed $\rho_{fn} = 0.05$ (i.e. k is changing). d = 75. Curves for three values of r (25, 19, 15) Buhler, 2001

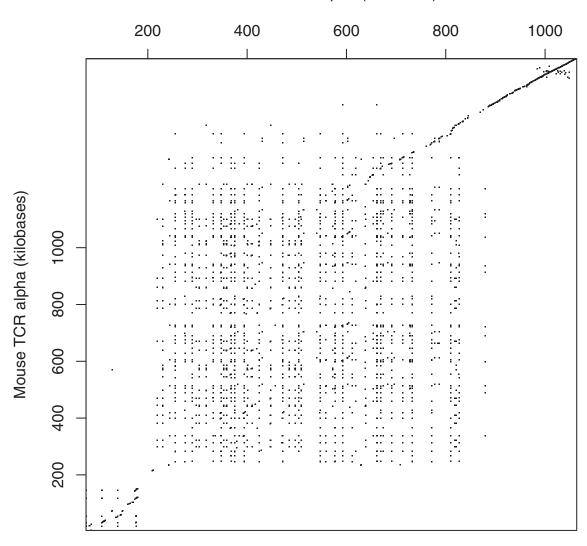
Running time

$$O(\ell kN) + O(\rho_{fp}dN^2)$$
 hashing/partitioning time comparison time

- Trick is to balance the two terms
 - ρ_{fp} decreases with increasing k
 - k depends on ℓ

Testing

Human TCR alpha (kilobases)



Buhler, 2001