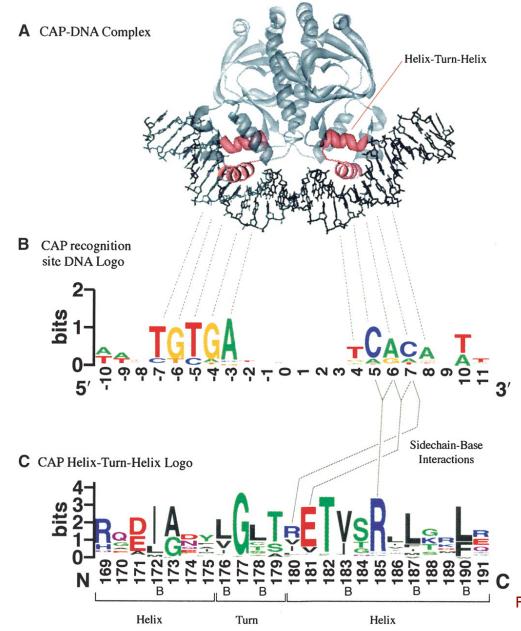
Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM)

Colin Dewey February 14, 2008

Sequence Motifs

- what is a sequence motif?
 - a sequence pattern of biological significance
 - typically repeated several times in the genome
- examples
 - protein binding sites in DNA
 - protein sequences corresponding to common functions or conserved pieces of structure

Sequence Motifs Example

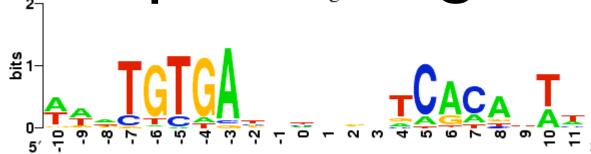


CAP-binding motif model based on 59 binding sites in E.coli

helix-turn-helix motif model based on 100 aligned protein sequences

Figure from Crooks et al., Genome Research 14:1188-90, 2004.

Sequence Logos



 Based on entropy (H) of random variable (X) representing distribution of character states at each position

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

 Height of logo at given position determined by decrease in entropy (from maximum)

$$H_{max} - H(X) = \log_2 N - \left(-\sum_x p(x)\log_2 p(x)\right)$$

The Motif Model Learning Task

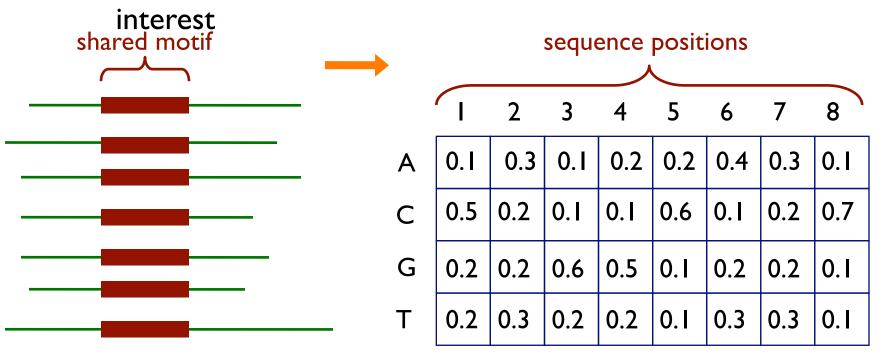
given: a set of sequences that are thought to contain an unknown motif of interest

do:

- infer a model of the motif
- predict the locations of the motif in the given sequences

Motifs and Profile Matrices (a.k.a. Position Weight Matrices)

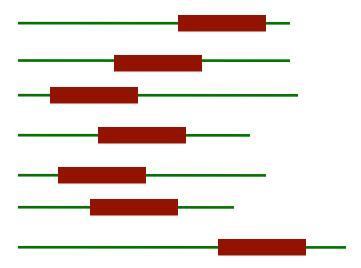
 given a set of aligned sequences, it is straightforward to construct a profile matrix characterizing a motif of



• each element represents the probability of given character at a specified position

Motifs and Profile Matrices

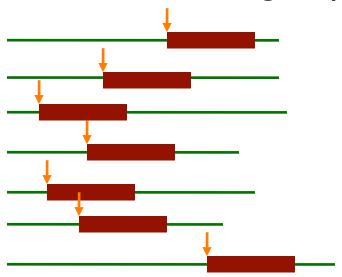
- how can we construct the profile if the sequences aren't aligned?
 - in the typical case we don't know what the motif looks like



use an Expectation Maximization (EM) algorithm

The EM Approach

- EM is a family of algorithms for learning probabilistic models in problems that involve hidden state
- in our problem, the hidden state is where the motif starts in each training sequence



The MEME Algorithm

- Bailey & Elkan, 1993, 1994, 1995
- uses EM algorithm to find multiple motifs in a set of sequences
- first EM approach to motif discovery:
 Lawrence & Reilly 1990

Representing Motifs in MEME

- a motif is
 - assumed to have a fixed width, W
 - represented by a matrix of probabilities: $p_{c,k}$ represents the probability of character c in column k
- also represent the "background" (i.e., outside the motif) probability of each character: $p_{c,0}$ represents the probability of character c in the background

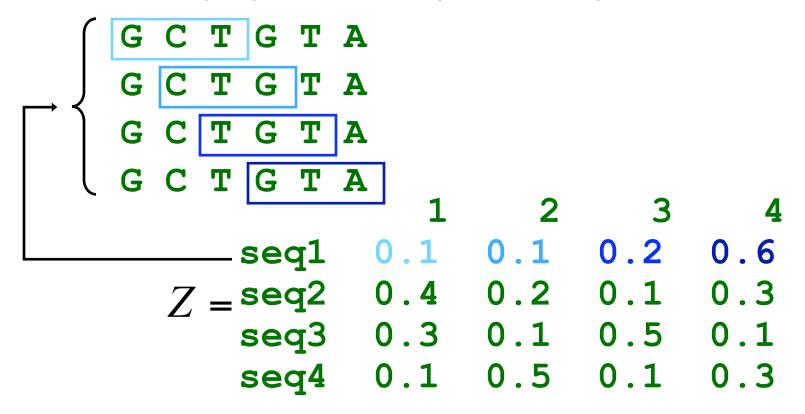
MEME Motif example

• example: a motif model of length 3

background

Basic EM Approach

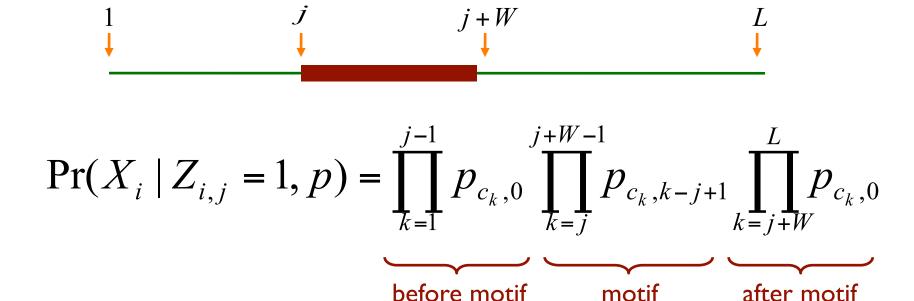
- the element $Z_{i,j}$ of the matrix $\mathbf Z$ represents the probability that the motif starts in position j in sequence i
- example: given 4 DNA sequences of length 6, where W=3



Basic EM Approach

```
given: length parameter W, training set of sequences
   set initial values for p
   do
       re-estimate Z from p
                                      (E –step)
       re-estimate p from Z
                                       (M-step)
   until change in p < \varepsilon
return: p, Z
```

Calculating the Probability of a Sequence Given a Hypothesized Starting Position



 X_i is the *i*th sequence

 $Z_{i,j}$ is I if motif starts at position j in sequence i c_k is the character at position k in sequence i

Example

$$\Pr(X_i | Z_{i3} = 1, p) =$$

$$p_{G,0} \times p_{C,0} \times p_{T,1} \times p_{G,2} \times p_{T,3} \times p_{A,0} \times p_{G,0} =$$

$$0.25 \times 0.25 \times 0.25 \times 0.1 \times 0.1 \times 0.25 \times 0.25$$

The E-step: Estimating Z

• to estimate the starting positions in Z at step t

$$Z_{i,j}^{(t)} = \frac{\Pr(X_i | Z_{i,j} = 1, p^{(t)}) \Pr(Z_{i,j} = 1)}{\sum_{k=1}^{L-W+1} \Pr(X_i | Z_{i,k} = 1, p^{(t)}) \Pr(Z_{i,k} = 1)}$$

this comes from Bayes' rule applied to

$$Pr(Z_{i,j} = 1 | X_i, p^{(t)})$$

The E-step: Estimating Z

• assume that, *a priori*, it is equally likely that the motif will start in any position

$$Z_{i,j}^{(t)} = \frac{\Pr(X_i | Z_{i,j} = 1, p^{(t)}) \Pr(Z_{i,j} - 1)}{\sum_{k=1}^{L-W+1} \Pr(X_i | Z_{i,k} = 1, p^{(t)}) \Pr(Z_{i,k} - 1)}$$

Example: Estimating Z

$$X_i = \mathbf{G} \ \mathbf{C} \ \mathbf{T} \ \mathbf{G} \ \mathbf{T} \ \mathbf{A} \ \mathbf{G}$$

$$0 \quad 1 \quad 2 \quad 3$$

$$\mathbf{A} \quad 0.25 \quad 0.1 \quad 0.5 \quad 0.2$$

$$P = \begin{array}{c} \mathbf{C} \quad 0.25 \quad 0.4 \quad 0.2 \quad 0.1 \\ \mathbf{G} \quad 0.25 \quad 0.3 \quad 0.1 \quad 0.6 \\ \mathbf{T} \quad 0.25 \quad 0.2 \quad 0.2 \quad 0.1 \\ \end{array}$$

$$Z_{i,1} = 0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25$$

$$Z_{i,2} = 0.25 \times 0.4 \times 0.2 \times 0.6 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25$$

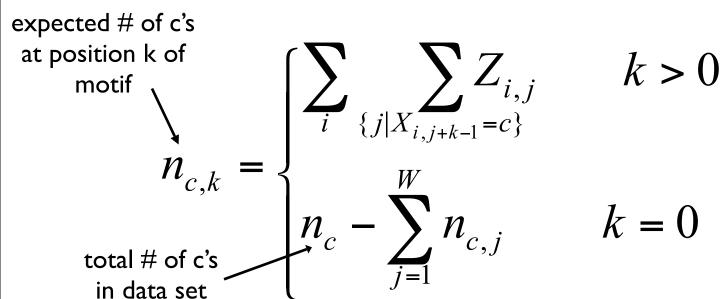
$$\vdots$$

• then normalize so that $\sum_{i=1}^{L-m+1} Z_{i,j} = 1$

The M-step: Estimating p

• recall $\mathcal{P}_{c,k}$ represents the probability of character c in position k; values for k=0 represent the background

$$p_{c,k}^{(t+1)} = \frac{n_{c,k} + d_{c,k}}{\sum_{b} (n_{b,k} + d_{b,k})}$$
pseudo-counts



Example: Estimating p

A C **A** G C **A**
$$Z_{1,1} = 0.1, Z_{1,2} = 0.7, Z_{1,3} = 0.1, Z_{1,4} = 0.1$$

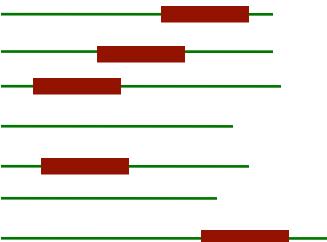
A G G C A G
$$Z_{2,1} = 0.4, Z_{2,2} = 0.1, Z_{2,3} = 0.1, Z_{2,4} = 0.4$$

T C A G T C
$$Z_{3,1} = 0.2, Z_{3,2} = 0.6, Z_{3,3} = 0.1, Z_{3,4} = 0.1$$

$$p_{\mathrm{A},1} = \frac{Z_{1,1} + Z_{1,3} + Z_{2,1} + Z_{3,3} + 1}{Z_{1,1} + Z_{1,2} \ldots + Z_{3,3} + Z_{3,4} + 4}$$

The ZOOPS Model

- the approach as we've outlined it, assumes that each sequence has exactly one motif occurrence per sequence; this is the OOPS model
- the ZOOPS model assumes <u>zero or one occurrences per</u> <u>sequence</u>



E-step in the ZOOPS Model

- we need to consider another alternative: the ith sequence doesn't contain the motif
- we add another parameter (and its relative)

λ

prior probability that any position in a sequence is the start of a motif

$$\gamma = (L - W + 1)\lambda$$

prior probability of a sequence containing a motif

E-step in the ZOOPS Model

$$Z_{i,j}^{(t)} = \frac{\Pr(X_i \mid Z_{i,j} = 1, p^{(t)}) \lambda^{(t)}}{\Pr(X_i \mid Q_i = 0, p^{(t)}) (1 - \gamma^{(t)})} + \sum_{k=1}^{L-W+1} \Pr(X_i \mid Z_{i,k} = 1, p^{(t)}) \lambda^{(t)}$$

• Q_i is a random variable for which $Q_i = 1$ if sequence X_i contains a motif, $Q_i = 0$ otherwise

$$Pr(Q_{i} = 1) = \sum_{j=1}^{L-W+1} Z_{i,j}$$

$$Pr(X_{i} | Q_{i} = 0, p) = \prod_{j=1}^{L} p_{c_{j},0}$$

M-step in the ZOOPS Model

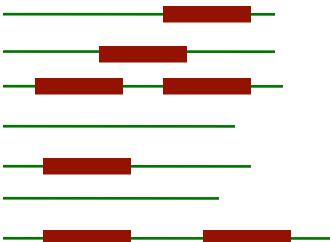
- update p same as before
- update γ as follows:

$$\lambda^{(t+1)} = \frac{1}{n(L-W+1)} \sum_{i=1}^{n} \sum_{j=1}^{L-W+1} Z_{i,j}^{(t)}$$

$$\gamma^{(t+1)} \triangleq \lambda^{(t+1)} (L - W + 1)$$

The TCM Model

 the TCM (two-component mixture model) assumes zero or more motif occurrences per sequence



Likelihood in the TCM Model

- ullet the TCM model treats each length W subsequence independently
- to determine the likelihood of such a subsequence:

$$\Pr(X_{i,j} \mid Z_{i,j} = 1, p) = \prod_{k=j}^{j+W-1} p_{c_k, k-j+1} \quad \text{assuming a motifination starts there}$$

$$\Pr(X_{i,j} \mid Z_{i,j} = 0, p) = \prod_{k=j}^{j+W-1} p_{c_k,0}$$

assuming a motif doesn't start there

E-step in the TCM Model

$$Z_{i,j}^{(t)} = \frac{\Pr(X_{i,j} \mid Z_{i,j} = 1, p^{(t)})\lambda^{(t)}}{\Pr(X_{i,j} \mid Z_{i,j} = 0, p^{(t)})(1 - \lambda^{(t)}) + \Pr(X_{i,j} \mid Z_{i,j} = 1, p^{(t)})\lambda^{(t)}}$$

subsequence isn't a motif

subsequence is a motif

• M-step same as before

Extending the Basic EM Approach in MEME

• How to choose the width of the motif?

- How to find multiple motifs in a group of sequences?
- How to choose good starting points for the parameters?
- How to use background knowledge to bias the parameters?

Choosing the Width of the Motif

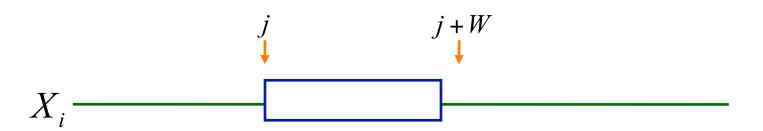
- try various widths
 - estimate the parameters each time
 - apply a likelihood ratio test based on
 - probability of data under motif model
 - probability of data under null model
 - penalized by # of parameters in the model

- we might want to find multiple motifs in a given set of sequences
- how can we do this without
 - rediscovering previously learned motifs

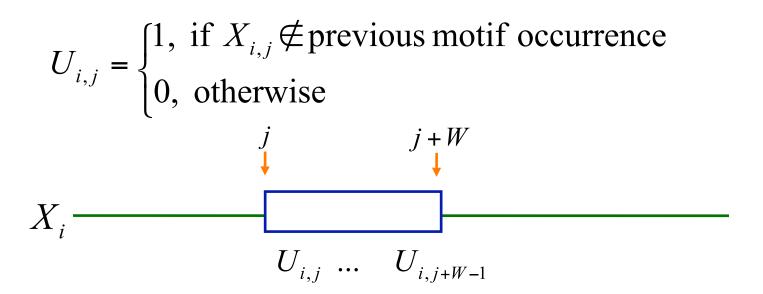
discovering a motif that substantially overlaps with previously learned motifs

- basic idea: discount the likelihood that a new motif starts in a given position if this motif would overlap with a previously learned one
- when re-estimating $Z_{i,j}$, multiply by $\Pr(V_{i,j} = 1)$

$$V_{i,j} = \begin{cases} 1, \text{ no previous motifs in } [X_{i,j},...,X_{i,j+w-1}] \\ 0, \text{ otherwise} \end{cases}$$



- To determine $\Pr(V_{i,j}=1)$ need to take into account individual positions in the window
- Use $U_{i,j}$ random variables to encode positions that are *not* part of a motif



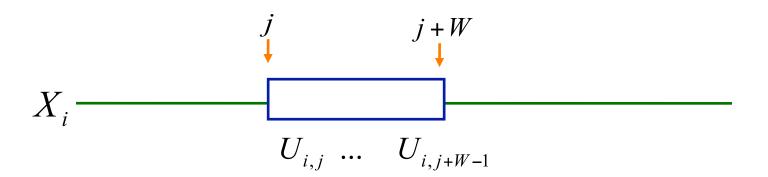
$$U_{i,j} = \begin{cases} 1, & \text{if } X_{i,j} \notin \text{previous motif occurrence} \\ 0, & \text{otherwise} \end{cases}$$

$$Z \text{ values at end of pass } p$$

$$U_{i,j}^{(p)} = U_{i,j}^{(p-1)} \left(1 - \max_{k=j-W+1...j} Z_{i,k}^{(p)}\right)$$

$$X_i = \sum_{Z_{i,j-W+1}} Z_{i,j}^{(p)} = \sum_{Z_{i,j-W+1}} Z_{i,j$$

$$Pr(V_{i,j} = 1) = min(Pr(U_{i,j} = 1), ..., Pr(U_{i,j+W-1} = 1))$$



Starting Points in MEME

- EM is susceptible to local maxima
- ullet for every distinct subsequence of length W in the training set
 - derive an initial p matrix from this subsequence
 - run EM for one iteration
- choose motif model (i.e., p matrix) with highest likelihood
- run EM to convergence

Using Subsequences as Starting Points for EM

- ullet set values corresponding to letters in the subsequence to some value π
- set other values to $(I \pi)/(N-I)$ where N is the size of the alphabet
- example: for the subsequence TAT with π =0.5

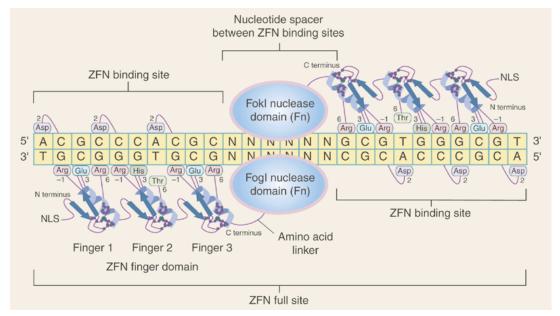
$$p = \begin{bmatrix} 1 & 2 & 3 \\ A & 0.17 & 0.5 & 0.17 \\ C & 0.17 & 0.17 & 0.17 \\ G & 0.17 & 0.17 & 0.17 \\ T & 0.5 & 0.17 & 0.5 \end{bmatrix}$$

Final MEME algorithm

```
procedure MEME (X:dataset of sequences)
 for p = 1 to p_{\text{max}} do
   for W = W_{\min} to W_{\max} by \sqrt{2} do
    for \lambda^0 = \lambda_{\min} to \lambda_{\max} by 2 do
      Choose good \theta^0 given W and \lambda^0
      Run EM to convergence
      Remove outer columns of motif (finetune W)
    end
   end
   Output best model, adjusted for overfit
   Update priors U_{ii} for multiple motifs
 end
end
```

Using Background Knowledge to Bias the Parameters

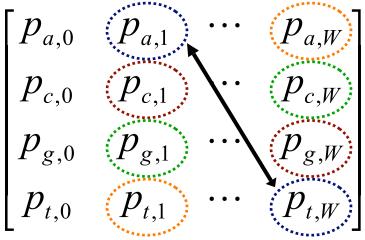
 accounting for palindromes that are common in DNA binding sites



 using Dirichlet mixture priors to account for biochemical similarity of amino acids

Representing Palindromes

parameters in probabilistic models can be "tied" or "shared"



• during motif search, try tying parameters according to palindromic constraint; accept if it increases likelihood test (half as many parameters)

Dirichlet mixtures in MEME

- Useful for protein motifs
- Amino acids can be grouped into classes based on certain properties (size, charge, etc.)
- Idea: use different pseudocounts in columns depending on most likely classes

Amino acids

NONPO	DLAR, HYDROP	новіс	POLAR, UNCHARGED		
Alanine Ala A MW = 89	- 00С Н ₃ N СН	- CH ₃	OUPS H-0	CH COO⁻	Glycine Gly G MW = 75
Valine Val V MW = 117	. оос н ³ й >сн	- CH ^{CH₃}	HO-CH ₂ -	CH (N H3	Serine Ser S MW = 105
Leucine Leu L MW = 131	-00C H ³ M >CH	- сн ₂ - сң сн ₃	OH CH ₃ CH -	CH \ \frac{h}{c00} -	Threonine Thr T MW = 119
Isoleucine Ile I MW = 131	-00C CH	- сн ₂ - сн ₃	HS - CH ₂	-сн ^{^й} н³	Cysteine Cys C MW = 121
Phenylalanine Phe F MW = 131	-00C H ₃ N >CH	- CH ₂	но - (СМ - сн ₂	-сн(^{йн³}	Tyrosine Tyr Y MW = 181
Tryptophan Trp VV MVV = 204	-00С Н ₃ Й >сн	- CH ₂ - CH ₂	NH ₂ C - CH ₂	-CH \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Asparagin Asp N MW = 132
Methionine Met M MW = 149	-00C H ₃ N >CH	- CH ₂ - CH ₂ - S - CH ₃	NH ₂ C - CH ₂ - CH ₂	-сн ^{соо} -	Glutamine Gln Q MW = 146
Proline Pro P MW = 115	-00C CI	NCH ₂ CH ₂	* NH ₃ - CH ₂ - (CH	POLAR BASIC 2)3 - CH COO N H3	Lysine Lys K MW = 146
Aspartic acid Asp D MW = 133	OOC CH	- CH ₂ - C 0	NH ₂ N H ₂ C - NH - (CH	⁵) ³ - CH $\stackrel{h}{\sim}$ H ³	Arginine Arg R MW = 174
Glutamine acid Glu E MW = 147	-00C H ₃ N >CH	- CH ₂ - CH ₂ - C 0	/=C-CH ₂ -0	сн	Histidine His H MW = 155

Dirichlet distribution

- Each motif column corresponds to a multinomial distribution \mathbf{p}_k
- ullet Using pseudocounts for estimating ${f p}_k$ is essentially equivalent to using Dirichlet prior
- Dirichlet distribution is the conjugate prior to the multinomial

$$\mathbb{P}[n|\theta] = M^{-1}(n) \prod_{i=1}^{K} \theta_i^{n_i}$$

$$\mathbb{P}[\theta|\beta] = Z^{-1}(\beta) \prod_{i=1}^{K} \theta_i^{\beta_i - 1} \delta \left(\sum_{i=1}^{K} \theta_i - 1 \right)$$

Mixtures of Dirichlets

$$\mathbb{P}[\mathbf{p}_k|\beta^1,\ldots,\beta^R] = \sum_{i=1}^R q_i \mathcal{D}(\mathbf{p}_k|\beta^i)$$

Think of q_i as prior probability of ith Dirichlet distribution.

Given \mathbf{c}_k (expected counts of characters in column k),

$$\mathbb{P}[\mathbf{p}_{k}|\mathbf{c}_{k}] = \sum_{i} \mathbb{P}[\mathbf{p}_{k}|\beta^{i}, \mathbf{c}_{k}] \mathbb{P}[\beta^{i}|\mathbf{c}_{k}] = \sum_{i} \mathcal{D}[\mathbf{p}_{k}|\beta^{i} + \mathbf{c}_{k}] \mathbb{P}[\beta^{i}|\mathbf{c}_{k}]$$

$$\mathbb{P}[\beta^{i}|\mathbf{c}_{k}] = \frac{q_{i}\mathbb{P}[\mathbf{c}_{k}|\beta^{i}]}{\sum_{j} q_{j}\mathbb{P}[\mathbf{c}_{k}|\beta^{j}]}$$

PME: posterior mean estimate (different than maximum likelihood estimate)

$$\mathbf{p}_k^{PME} = \frac{\mathbf{c}_k + \mathbf{d}_k}{|\mathbf{c}_k + \mathbf{d}_k|} \quad \text{where} \qquad d_{k,\pi} = \sum_{i=1}^R \mathbb{P}[\beta^i | \mathbf{c}_k] \beta_{\pi}^i$$

See chapter II of textbook for more details

Maximum Likelihood Estimation

- During Maximization (M) step of the EM algorithm, we have to find the parameters that maximize the expected log likelihood
- How to do this in general?
 - Take derivative of expected log likelihood with respect to parameter to be optimized
 - Set derivative equal to zero and solve for parameter
 - Use constrained optimization techniques for dependent parameters

Likelihood in MEME

OOPS model

$$\ell = \log \mathbb{P}[X, Z | \theta] = \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{i,j} \log \mathbb{P}[X_i | Z_{i,j} = 1, \theta] + n \log \frac{1}{m}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{i,j} (\sum_{k=1}^{W} \mathbf{I}(i, j + k - 1)^{T} \log \mathbf{p}_k + \sum_{k=\Delta_{i,j}} \mathbf{I}(i, k)^{T} \log \mathbf{p}_0) + n \log \frac{1}{m}$$

 X_i : sequence i in data set (i = 1, ..., n)

 $Z_{i,j}$: binary indicator random variable, 1 if motif starts at position j in sequence i

 $\mathbf{I}(i,j)$: vector-valued indicator variable, $\mathbf{I}(i,j)_{\pi} = 1$ if $X_{i,j} = \pi$, or 0 otherwise.

$$\Delta_{i,j} = \{1, 2, \dots, j - 1, j + w, \dots, L\}$$

Constrained optimization

Use Lagrange multipliers for parameter constraint

$$\tilde{\ell} = \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{i,j} (\sum_{k=1}^{W} \mathbf{I}(i,j+k-1)^{\mathrm{T}} \log \mathbf{p}_{k} + \sum_{k=\Delta_{i,j}} \mathbf{I}(i,k)^{\mathrm{T}} \log \mathbf{p}_{0}) + n \log \frac{1}{m} + \sum_{k=0}^{W} \lambda_{k} (1 - \sum_{\pi} p_{k,\pi})$$

$$\frac{\partial \tilde{\ell}}{\partial p_{k,\pi}} = \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{i,j} \mathbf{I}(i,j+k-1)_{\pi} \frac{1}{p_{k,\pi}} - \lambda_k, \text{ for } k > 0$$

 Maximizing parameters of this function are maximizing parameters of original, subject to constraints

Constrained optimization

• Set derivative to zero, solve for λ_k

$$0 = \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{i,j} \mathbf{I}(i, j+k-1)_{\pi} \frac{1}{\hat{p}_{k,\pi}} - \lambda_{k}$$

$$\lambda_{k} = \frac{1}{\hat{p}_{k,\pi}} \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{i,j} \mathbf{I}(i, j+k-1)_{\pi}$$

$$\lambda_{k} = \frac{c_{k,\pi}}{\hat{p}_{k,\pi}}$$

$$\hat{p}_{k,\pi} \lambda_{k} = c_{k,\pi}$$

$$\sum_{\pi} \hat{p}_{k,\pi} \lambda_{k} = \sum_{\pi} c_{k,\pi}$$

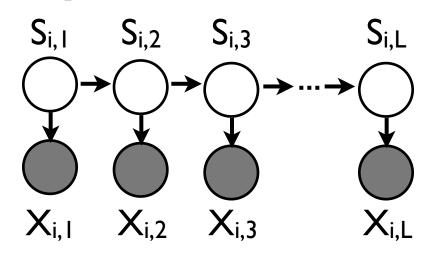
$$\lambda_{k} = |\mathbf{c}_{k}|$$

• Solve for $\hat{p}_{k,\pi}$

$$\hat{p}_{k,\pi} = \frac{c_{k,\pi}}{\lambda_k} = \frac{c_{k,\pi}}{|\mathbf{c}_k|}$$

Hidden Markov model representation

For each sequence X_i



 $X_{i,j}$: observed character j of sequence i $S_{i,j}$: hidden state j for sequence i $S_{i,j}$ ϵ $\{0, 1, 2, ..., W\}$

Emission probabilities = profile matrix probabilities (state = column in profile)

HMM state transitions

