Using Multiple Levels of Learning and Diverse Evidence Sources to
Uncover Coordinately Controlled Genes

Mark Craven
David Page

CRAVEN@BIOSTAT.WISC.EDU
PAGEQBIOSTAT.WISC.EDU

Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53706 USA

Jude Shavlik
Joseph Bockhorst

SHAVLIK@QCS.WISC.EDU
JOEBOCKQ(S.WISC.EDU

Department of Computer Sciences, University of Wisconsin, Madison, WI 53706 USA

Jeremy Glasner

JEREMYQGENOME.WISC.EDU

Department of Genetics, University of Wisconsin, Madison, WI 53706 USA

Abstract

Now that the complete genomes of numerous
organisms have been determined, a key prob-
lem in computational molecular biology is un-
covering the relationships that exist among
the genes in each organism and the regula-
tory mechanisms that control their operation.
We are developing computational methods
for discovering such regulatory mechanisms
and relationships. Toward this end, we have
developed a machine learning approach to
identifying sets of genes that are coordinately
controlled in the F. coli genome. A number
of factors make this an interesting applica-
tion for machine learning: (i) there is a rich
variety of data types that provide useful evi-
dence for this task, (ii) the overall problem of
uncovering regulatory mechanisms can be de-
composed in multiple machine learning sub-
tasks operating at different levels of detail,
(iii) there are not any known negative train-
ing examples, and (iv) some of the features
are misleading in their predictiveness.

1. Introduction

The complete genomic sequences of more than 30 or-
ganisms have been determined in the last few years,
more than 130 other genomes are currently being se-
quenced, and a “working draft” of the human genome
is expected to be completed this year. A significant
challenge now confronting biologists is to determine
the functions of the genes contained in these sequences.
One aspect of understanding the function of a given

gene is to determine the conditions under which it is
active and the interactions it has with other genes. To-
ward this end, we have begun a research project that is
investigating computational approaches to uncovering
the regulatory mechanisms and interactions of genes in
the heavily studied organism E. coli. A key aspect of
our approach is to learn predictive models from exist-
ing data. As a first step, we have used machine learn-
ing methods to induce models for predicting operons.
Informally, operons are consecutive sequences of genes
that are “turned on” or “shut off” as a unit.

We argue that this is an interesting machine learning
application for several reasons:

e The problem of uncovering regulatory mecha-
nisms can be decomposed into multiple, related
machine learning tasks.

e There is a rich variety of data types that provide
useful evidence for the task including DNA se-
quence data, numeric gene-expression data, and
hierarchically organized gene annotations.

e We do not have any negative examples per se for
the target concept.

e A group of features that is apparently the most
predictive group, is probably misleading in its
value. In other words, the values we have for these
features on unlabeled data are less reliable than
the values we have for labeled data.

We consider these issues in more detail throughout the
paper and revisit them again in the concluding section.
The first issue — multiple related learning tasks — we
discuss more here. The main task that we consider in
this paper is predicting which sequences of genes con-

model for predicting
regulatory networks

N/

model for predicting
operons

models for discovering
new regulatory signals

model for predicting
terminators

model for predicting
promoters

Figure 1. Our multi-level learning approach to discovering
gene regulatory mechanisms. The tasks at the highest level
represent those that are motivating our research. The task
at the middle level represents the main focus of this paper.
Those at the lowest level represent learning tasks that we
address in order to make better predictions for the middle
level task. The arrows represent subtask relationships.

stitute operons. This task is not the overall goal of
our work, however, but only an intermediate step in
addressing such problems as inferring networks of reg-
ulatory interactions, and discovering new subclasses of
sequences involved in controlling gene transcription.
Moreover, we hypothesize that operon predictions can
be improved by first identifying certain control se-
quences (promoters and terminators) in the genome.
The recognition of these sequences is itself not a well
understood task, and thus we also address the learning
subtasks of constructing predictive models of these se-
quences. Figure 1 illustrates the relationships among
the learning tasks involved in our work. The predic-
tions made by a model learned at one level are passed
to learning components at the next level to be used
as input features. This idea of decomposing a learn-
ing task into subtasks has been around for some time
(Fu & Buchanan, 1985; Shapiro, 1987), and has been
applied recently in robotic systems (O’Sullivan, 1998;
Stone, 1998).

2. Problem Domain

Currently, our primary task is to predict operons in
the E. coli genome. The approach that we are devel-
oping is applicable to other prokaryotic' organisms as
well. The genome of E. coli, which was sequenced at
the University of Wisconsin (Blattner et al., 1997),
consists of a single circular chromosome of double-
stranded DNA. The chromosome of the particular
strain of E. coli (K-12) in our data set has 4,639,221
base pairs (this can be thought of as a string consisting
of 4,639,221 characters from a four-letter alphabet).

A gene is a sequence of DNA bases that carries the
information required for constructing a particular pro-
tein. Proteins perform most of the essential functions

! Prokaryotes are single-celled organism that do not have
separate nuclei.

Figure 2. The concept of an operon. The curved line rep-
resents part of the E. coli chromosome and the rectan-

gular boxes on it represent genes. An operon is a se-
quence of genes, such as [g2, g3, g4] that is transcribed as
a unit. Transcription is controlled via an upstream se-
quence, called a promoter, and a downstream sequence,
called a terminator. A promoter enables the molecule per-
forming transcription to bind to the DNA, and terminator
signals the molecule to detach from the DNA. Each gene is
transcribed in a particular direction, determined by which
of the two strands it is located. The arrows in the figure
indicate the direction of transcription for each gene.

within cells, including structural support, transport of
other substances, response to chemical stimuli, etc. E.
coli has approximately 4,400 genes, located on both
strands of the chromosome.

The process by which proteins are produced from their
encoding genes is referred to as gene expression. Indi-
vidual genes are expressed at differing levels depending
on (i) the extent to which certain other genes in the
cell are active, and (ii) environmental factors such as
temperature and the presence of particular nutrients.
In multicellular organisms, for example, some genes
may be completely shut off in certain cells or tissues.

The first step in the process of a gene being expressed
is for it to be transcribed into a similar RNA sequence.
Although the expression of a gene can be regulated at
various points, the most significant regulatory controls
are exerted on the transcription process. For example,
a gene can be “shut off” by preventing it from be-
ing transcribed. In some organisms, such as E. coli,
there are certain sets of contiguous genes, called oper-
ons that are transcribed coordinately. In other words,
the genes in an operon are “turned on” or “shut off” as
a unit. Thus, a complete understanding of the regula-
tory mechanisms in organisms such as F. coli requires
that we know which sets of genes constitute operons.

Figure 2 illustrates the concept of an operon. The
transcription process is initiated when a molecule
called RNA polymerase binds to the DNA before the
first gene in an operon. The RNA polymerase binds
to a special sequence called a promoter. It then moves
along the DNA using it as a template to produce an
RNA molecule. When the RNA polymerase gets past
the last gene in the operon, it encounters a special se-
quence called a terminator that signals it to release the
DNA and ceases transcription. Some genes are tran-

scribed individually; we refer to these special cases as
singleton operons.

The data that we have available for learning a model
of operons, some of which come from the RegulonDB
(Salgado et al., 2000), include the following:

e complete DNA sequence of the genome,

e beginning and ending positions of 3,033 known
genes and 1,372 putative genes,

e positions and sequences of 438 known promoters,
and 289 known terminators,

e functional annotation codes characterizing 1,668
genes; these are taken from a three-level, 123-leaf
hierarchy (Riley, 1996),

e gene expression data characterizing the activity
levels of 4,097 genes and putative genes across 39
experiments,

e 365 known operons.

It is estimated (F. Blattner, personal communication)
that there are several hundred undiscovered operons in
E. coli. Our immediate goal is to predict these operons
using a model learned from the data described above.

3. Problem Representation

In this section we describe the features that our learn-
ing methods use to assess the probability that a given
candidate actually is an operon.

3.1 Length and Spacing Features

We use several features that relate to the size and inter-
genic spacing of operons and non-operons:

e Operon size: The number of genes in the candidate
operon.

e Within-operon spacing: The mean and the maz-
imum spacing (# DNA base pairs) between the
genes in a candidate operon (e.g., the distances
between ¢2 and ¢3 and between ¢3 and ¢4 in Fig-
ure 2). Since the genes in an operon are tran-
scribed together, there might be constraints on
inter-gene spacing. This feature is not defined for
singleton operons (consisting of one gene).

e Distance to neighboring genes: The distances to
the preceding (g1 in Figure 2) and following (g5 in
Figure 2) genes. Notice that these genes are not
part of the candidate operon.

e Directionality of the neighboring genes: These are
two Boolean-valued features, indicating whether
or not the directionality of the preceding and fol-
lowing genes individually match the directionality

of the genes within the candidate operon. Recall
that all the genes within an operon are transcribed
in the same direction.

We refer to these last two features collectively as our
neighboring genes features.

3.2 Functional Annotation Features

Since the genes in an operon typically act together to
perform some common function, we expect the func-
tions of the individual genes to be related to each
other. The functions of many genes in E. coli have
been described using a three-level hierarchy (Riley,
1996). The levels of this hierarchy represent broad,
intermediate, and detailed functions. For example
one path from the root to a leaf in this hierarchy
is: root—metabolism of small molecules—carbon energy
metabolism—anaerobic respiration.

We measure the “functional distance” between two
genes in terms of how deeply into this hierarchy they
match: genes with completely identical functions have
a distance of 0, genes with identical broad and inter-
mediate functions only have a distance of 2, genes with
identical broad functions only have a distance of 4, and
genes without common function have a distance of 6.
In cases where the function is unknown for one or both
genes at a given level, we split the difference: e.g., if
two genes share a broad function but the intermediate
function of one is unknown, the distance is 5.

Given the distance measure between the annotations
for pairs of genes, we use three features to measure the
functional homogeneity of a candidate operon. Col-
lectively, we refer to these as the functional annota-
tion features. The first feature represents the mean
pairwise functional distance for genes within the can-
didate operon. We also consider the functional dis-
tance between the gene preceding the candidate and
genes within the candidate. Specifically, we compute
the mean of the pairwise distances between the pre-
ceding gene and each of the genes within the operon.
The third feature is analogous except that it uses the
first gene after the candidate operon.

3.3 Transcription Signal Features

As discussed in Section 2, each operon has special
subsequences, called promoters and terminators, up-
stream and downstream respectively. These subse-
quences act as signals to the molecule that performs
transcription, effectively telling it to begin transcrip-
tion here and end transcription here. Thus, to decide if
a given sequence of genes represents an operon or not,
we would like to look upstream from the first gene in

the sequence to see if we find a promoter, and to look
downstream to see if we find a terminator.

The task of recognizing promoters and terminators,
however, is not easily accomplished. Although there
are known examples of both types of sequences, the
sufficient and necessary conditions for them are not
known. Thus, to use promoters and terminators as
evidence for operons, we first need some method that
can be used to predictively identify them. Our ap-
proach is to learn interpolated Markov models (IMMs)
(Jelinek & Mercer, 1980) that characterize the known
promoters and terminators. IMMs have been used
previously for modeling biological sequences (Salzberg
et al., 1998), although the particular task here is some-
what different. An interpolated Markov model consists
of a set of Markov models of different orders. An IMM
makes a prediction in a given case by interpolating
among the statistics represented in the models of dif-
ferent order.

Each IMM is trained to recognize the presence of a
particular signal (promoter or terminator). Our train-
ing set for promoters consists of 438 sequences, each of
which is 81 bases long and contains a promoter in it.
Since these promoter sequences are aligned to a com-
mon reference point, we can obtain statistics about
the likelihood of a particular base at a particular posi-
tion in a promoter. The terminator data set is similar,
except that it consists of 289 sequences of length 58.

Our IMMs represent the probability of seeing each of
the possible DNA bases at each position in the given
signal. To assess the probability that a given sequence
S is a promoter (or terminator), we calculate the prod-
uct of the IMM’s estimated probability of seeing each
base in the sequence.

Pr(S|model) = ﬁIMM(S’i) (1)

Here S; is the base at the ith position in sequence S
and n is the length of the sequence we are evaluating.

To assess the probability of seeing a given base in a par-
ticular position, our IMM interpolates between a Oth-
order Markov model and a 1st-order Markov model.

Ai—1,1(Si—1) Pr; 1(Si) + Ao Prio(Si)
Aic1,1(Si—1) + i

IMM(S;) =
(2)

The notation Pr;1(S;) represents the probability of
seeing base S; at the ith position under a 1st-order
model, and Pr; ¢(.5;) represents the same under a Oth-
order model. Whereas the Oth-order model simply rep-
resents the marginal probabilities of seeing each base
at the given position, the 1st-order model represents

the conditional probabilities of seeing each base given
the previous base in the sequence S;_1.

Pr(8i) = Pr(S:) Pr(8;) = Pr(Si[Si-1) (3)

We use a simple scheme to set the values of the A
parameters, which represent the amount of weight we
give each model being interpolated. For all positions
i, Ai,o is set to 1. The parameter A\;_1 1(S;—1) is set to
1 if the training data included at least m occurrences
of the base S;_1 at position ¢ — 1, and is set to 0 oth-
erwise. The intuition here is that we trust a 1st-order
probability only if we had sufficient data from which to
estimate it. In all of our experiments, we set m to 40.

Once we have induced our promoter and terminator
IMMSs, we can use them to look for instances of these
two signals in the neighborhood of a candidate operon.
We do this by “scanning” the promoter model along
the 300 bases immediately preceding the first gene in a
candidate operon, and similarly by scanning the termi-
nator model along the 300 bases immediately following
the last gene in the candidate. We then characterize a
candidate operon by two features: the promoter feature
is the strongest predicted promoter we find upstream
from the candidate, and the terminator feature is the
strongest predicted terminator we find downstream.

3.4 Gene Expression Features

Recent microarray technology enables scientists to
measure the activity level of thousands of genes un-
der various experimental conditions. The Wisconsin
E. coli Genome Project has begun generating such
data, and for the work presented in this paper we use
data from the first 39 experiments. We have two mea-
surements for each gene in each experiment: intensity
values representing the relative amount of RNA pro-
duced by the gene under some experimental condition
versus the relative amount under some baseline con-
dition. We refer to these two sets of measurements
from a given array as the two channels of the array.
From this data, we compute two sets of features for our
learning algorithm. The first set of features is based
on the ratios of the two measurements, and the second
set is based on the raw measurements themselves.

For the features based on ratios, we associate with each
gene gy a vector 7y of length m, where m is the number
of experiments and the elements of the vector are the
measured ratios for the gene. Since the genes within
an operon are coordinately controlled, we expect the
expression vectors of two such genes to be more cor-
related than the expression vectors of two randomly
chosen genes. Hence, the first set of features we use
for classifying candidate operons are based on pairwise

correlations between the expression vectors of genes of
interest. Specifically, we use three features to charac-
terize a candidate operon ¢: (i) the mean correlation of
every pair of genes in ¢, (ii) the correlation between the
first gene in ¢ and the previous gene in the sequence,
(iii) the correlation between the last gene in ¢ and the
next gene in the sequence.

The ratio correlation measure is appropriate to iden-
tify genes that have similar expression profiles. How-
ever, we expect an even stronger association among
genes that are in the same operon. Since these genes
are transcribed together, the absolute amount of RNA
produced should be similar. Consequently, we also de-
rive features from the raw measurements.

For these features, we treat each channel as a separate
experiment. Our approach is based on the model that
each intensity value is the result of some true under-
lying signal plus normally distributed random noise.
Let d.; be a vector of expression values from the jth
experiment for the genes in candidate operon c. If ¢
actually is an operon, the likelihood of the observed
measurements d.; is given by:

Pr(d.;|O = true) « HN(JCj (1) thejs Ocj)- (4)

K2

Here O is the random variable indicating whether or
not the candidate c is an operon, @.;(¢) represents the
intensity value of the ith gene in the candidate for
the jth experiment, and N(@.;(%), ficj, Oc;j) Tepresents
the density value of d.;(¢) under a normal distribution
with parameters fic; and oc;. In our model, p.; repre-
sents the true signal for the operon in this experiment,
and o; represents the standard deviation of the noise
for the given operon and experiment. Our approach
estimates p.; by the mean of the values in the jth ex-
periment for the genes in the candidate. The param-
eter o.; is estimated from the training set operons by
fitting a linear function in (u;, o;) space, where each
data point in this space is determined from a known
operon in the training set (singletons are ignored).

To assess a candidate operon we compute the following
likelihood ratio in which we consider all experiments
and treat them as independent of one another:

- [I; Pr(dc;|O = true)
[T, Pr(a)

Here Pr(d.;) is the marginal probability of seeing the
observed intensity values in the jth experiment. It is
modeled by assuming that the distribution of inten-
sity values in a given experiment is exponential. We
determine the parameter of this exponential distribu-
tion using a maximum likelihood estimate.

L(c) ()

Using this approach, we calculate three features for a
candidate operon ¢: (i) the likelihood ratio L(c) for
all of the genes ¢, (ii) the likelihood ratio for the first
gene in ¢ and the previous gene in the sequence, and
(iii) the likelihood ratio for the last gene in ¢ and the
next gene in the sequence. Collectively, we refer to all
six of the features described in this section (the three
ratio-based features and the three absolute features)
as the expression data features.

4. Negative Examples

An interesting aspect of our learning task is that we
do not have a set of known non-operons. The nature
of scientific inquiry is such that biologists have identi-
fied several hundred operons in E. coli, but they have
not focused attention on identifying sequences of genes
that do not constitute operons.

We are able, however, to assemble a set of 6633 pu-
tative non-operons by exploiting the fact that operons
rarely overlap with each other. Given this rule, we
generate a set of negative examples by enumerating
every sequence of consecutive genes, from the same
strand, that overlaps, but does not coincide with a
known operon. We know that some of these generated
non-operons are actually true operons, because oper-
ons do overlap in some cases. However, the probability
of this is small and our learning algorithms are robust
in the presence of noisy data.

5. Machine Learning Algorithms

Given the representation of candidate operons pre-
sented in the preceding section, we could employ a
number of supervised learning algorithms to induce a
model for predicting whether a candidate operon really
is an operon or not. In our work to date we have pri-
marily used naive Bayes for this task. In this section,
we describe the specifics how we apply naive Bayes. In
the empirical evaluation presented in the following sec-
tion, we also evaluate the predictive accuracy of C5.0
(Quinlan, 1993; Quinlan, 1999).

Given a candidate operon — any consecutive sequence
of genes on the same strand — we would like to esti-
mate the probability that the candidate is an operon
given the available data. Using naive Bayes, we can
determine this as follows:

_ Pr(0)Pr(D|0) _ Pr(O)], Pr(D;|0)
PrOD) = ——5py— ~ Pr(D)

(6)
where O is a random variable indicating whether or
not, a candidate is an actual operon, D represents the
data available to make our determination, and D; is

the ith feature. The heart of the task is to estimate the
likelihood of the data of interest given the two possible
outcomes for O.

All of our features provide numeric characterizations
of candidate operons. To represent the conditional dis-
tribution of each feature given the class, we use a his-
togram approach. The first step of this procedure is to
choose the “cutpoints” that define the bins. This pro-
cedure selects the bin boundaries such that each bin
contains about 150 training examples (pooling posi-
tive and negative examples). Should some bin have no
examples of one class, we assume 0.5 examples of that
class fell into that bin. This smoothing method avoids
zero-valued probabilities which cause Bayes’ rule to
produce zero as its estimated probability.

6. Empirical Evaluation

We run a 10-fold cross-validation experiment with a
data set consisting of 365 known operons and 6633 se-
quences of genes thought not to be operons.? There
are several questions that we want to answer: What
level of accuracy can we achieve with our approach?
How does the accuracy of naive Bayes compare with
C5.0?7 What is the predictive value of individual fea-
tures?

To address the first two questions, we compare naive
Bayes to C5.0 using the same partitioning of the data
for cross validation. We give C5.0 essentially the same
feature representation as naive Bayes, and set all pa-
rameters of the algorithm to their default settings. We
treat our naive Bayes model as a classifier; if the pos-
terior probability of a candidate operon is greater than
0.5, we classify it as an operon. Table 1 shows the over-
all accuracy rates for the two learners as well as the
false positive and true positive rates. The false posi-
tive rate is defined as Fl'i%’ and the true positive

. TP . .
rate is defined as TPIFN- As the table indicates, the

two classifiers, in their present configurations, tend to
make different types of mistakes.

An interesting question is how does the accuracy of
our predictions vary as we raise or lower the threshold
at which we classify a candidate as an operon? Fig-

20f the 6633 non-operons, only 5145 actually appear in
some test set. The reason for this is subtle. We randomly
distribute the known operons into the 10 test sets. For each
known operon, we assign all of the overlapping negative ex-
amples to the same test set except for those examples that
also overlap a known operon in the corresponding training
set. This process ensures that no test-set example overlaps
an example in the corresponding training set. Since non-
operons can overlap multiple known operons, this process
leads to 1488 non-operons not appearing in any test set.

Table 1. Predictive accuracy for the 10-fold

validation experiment.

Cross-

method | accuracy (%) | FP rate (%) | TP rate (%)
Bayes 90.0 8.9 74.5
C5.0 94.5 2.3 48.9
100% S—
80% 1
i)
@
4
o 60% 1
2
.“§
Q- 40% 1
[}
>
z
20% i
Bayes
‘ ‘ ‘ C5Q
0% 20% 40% 60% 80% 100%

False Positive Rate

Figure 3. ROC curves for naive Bayes and C5.0.

ure 3 shows the resulting ROC curve as we vary this
threshold for our naive Bayes model. This curve is in-
formative since, unlike the overall accuracy numbers in
Table 1, it does not depend on the class distribution
(this is a property of ROC curves). In practice, we
do not know what the class distribution of operons vs.
non-operons is. Also, depending on how we use our
operon predictions we may want to associate different
costs with the different types of mistakes the classi-
fier can make. Figure 3 also shows the ROC curve
for C5.0; we generate this curve by varying misclas-
sification costs when running C5.0. This figure also
suggests, that overall, the predictive accuracy of naive
Bayes is about the same as C5.0.

We perform two experiments to evaluate the contri-
bution of our individual features to the predictive ac-
curacy of our probabilistic model. In the first experi-
ment, we consider making our predictions using only a
single feature, or a small group of closely related fea-
tures. We collectively refer to both of these cases as
“feature groups.” In the second experiment, we learn
models that leave out a single group. Figure 4 shows
the resulting ROC curves for the models that consist
of single feature groups, and Figure 5 shows the ROC
curves for the models that leave one feature group out.

Figures 4 and 5 illustrate three interesting points.
First, the features vary quite a bit in their predic-
tive accuracy. The terminator feature, for example,
seems to have negligible predictive value, whereas the
functional annotation, neighboring genes, expression data
and promoter features carry quite a bit of predictive in-

100%

80% r

60% r

all features
functional annotation ------ 1
neighboring genes
expression data
promoter -------
operon size ------
within-operon spacing -~
 terminator -~~~

40%

True Positive Rate

20%

4 ‘ ‘
0% 20% 40% 60% 80%
False Positive Rate

100%

Figure 4. ROC curves for predictions made using individ-
ual feature groups. The reader should notice that the order
of listings in the key reflects the order of the curves.

100%
80% |
1]
5]
o
o 60% |
2
38 all features
& 40% functional annotation - i
s g neighboring genes -
= expression data
20% promoter -------]
operon size
within-operon spacing -~
_terminator -~

0% 20% 40% 60% 80%
False Positive Rate

100%

Figure 5. ROC curves for predictions made leaving out one
of the individual feature groups. The two curves that stand
out (from lowest to highest) are those leaving out the neigh-
boring genes and functional annotation feature groups.

formation. Interestingly, these four feature groups are
based on quite different types of data. Second, none
of the individual feature groups is nearly as predic-
tive as the model as a whole. This result indicates the
value of combining evidence from a variety of sources.
Third, as Figure 5 illustrates, the model that employs
all of the features is not overly reliant on any single
feature. Most of the leave-one-out curves are close to
the all-features curve.

7. Discussion and Conclusions

Our research to date in predicting operons has
broached several issues and lessons that should be of
interest to machine learning researchers.

1. Biased features. Our experiments showed that one
of the most predictive feature groups is the functional

annotation features. However, we suspect that the pre-
dictive value of these features is not as high as our
experiments suggest. The basic problem is that, in
general, we know more about genes in known operons
than we do about other genes in the genome since they
have been more heavily studied. Therefore, we expect
that the functional annotation values for genes in our
set of known operons are more reliable and more con-
sistent than the values for genes that are not in known
operons. Unfortunately, we do not know how to esti-
mate the extent of this bias nor correct for it.

This issue of some features being more informative for
our labeled examples than they will be in general also
crops up in the case of our promoter and terminator
features, since the set of known promoters and termi-
nators is concentrated around the set of known oper-
ons. However, in this case, we can ensure that our
experiments are not biased. Because we are not able
to represent the presence of promoters and termina-
tors directly, we used learned models to predict them.
Thus, we can ensure that our operon-prediction exper-
iments are not biased by leaving out of the promoter
(terminator) training sets those promoters (termina-
tors) associated with test-set operons. We wonder if
this general problem — some features being more infor-
mative for instances in the training set than they will
be for real live test instances — is prevalent in other
machine learning applications?

2. Multiple machine learning subtasks. Another les-
son of our experiments is the value of addressing the
learning task by decomposing it into multiple subtasks.
This lesson is illustrated by the fact that the promoter
features were among the most predictive. We would
not have access to these features without a learned
model to predict them, since the sufficient and neces-
sary conditions of promoters are not known.

3. Naive Bayes vs. C5.0. An interesting result from
our experiments is that the predictive performances of
naive Bayes and C5.0 are quite comparable, as illus-
trated in Figure 3. Hence, this work serves as an addi-
tional data point in understanding the relative predic-
tive accuracy of various machine learning approaches
for various applications. However, we have found that
naive Bayes has other advantages for this particular
application. First, it outputs a probability for each
candidate operon. We use these probabilities in subse-
quent processing in which we try to find the most op-
timal partitioning of the genome into operons (Craven
et al., 2000). Second, naive Bayes naturally handles
the situation with singleton candidate operons where
we have fewer features (e.g., within-operon spacing does
not apply) than we do with other candidates.

4. Absence of negative training examples. Another in-
teresting aspect of our task is the absence of negative
training examples. The nature of scientific inquiry is
such that biologists have identified at least 365 oper-
ons in E. coli, but they have not focused attention
on identifying sequences of genes that do not consti-
tute operons. We were able to generate a set of puta-
tive negative examples, however, by exploiting the fact
that overlapping operons are rare, and thus most gene
sequences that overlap with known operons are not
operons themselves. We know that there is some noise
in these negative class labels, however, since there are
exceptions to this general constraint.

In addition to these conclusions that are pertinent to
machine learning research, we note several lessons that
should be of interest to researchers who are applying
learning methods in computational biology domains.

1. Value of multiple evidence sources. Our experi-
ments indicate that when determining regulatory re-
lationships among genes, there is value in combining
evidence from various data sources. No single fea-
ture group had nearly as much predictive power as
the learned model as a whole, and the three most pre-
dictive feature groups represent diverse types of data.

2. Value of augmenting expression data. A related les-
son of our experiments pertains to the relative value
of gene expression data. There has been much recent
interest in identifying sets of related genes and dis-
covering regulatory relationships using microarray ex-
pression data (Eisen et al., 1998; Brown et al., 1999;
Friedman et al., 2000). Our results suggest a cau-
tionary note here: we were able to obtain much more
accurate operon predictions by considering other types
of data in conjunction with expression data.

A fundamental challenge facing the computational bi-
ology community is determining the functions of genes
in newly determined genomes, and the relationships
among these genes. We argue that this task is best
addressed by employing a wide array of data sources
as evidence, and we believe that the work presented
here represents a promising first step in this general
approach. We also argue that, increasingly, the most
challenging problems for machine learning involve rich,
diverse sets of data, and interrelated learning tasks.
Thus, we believe that our application provides an in-
teresting case study for machine learning researchers.

Acknowledgements

This research was supported by NSF Grant TRI-9502990,
NIH Grant R0O1 GM35682-15A1, and the Univ. of Wis-
consin Graduate School. Thanks to F. Blattner, C.
Kendziorski, N. Perna and C. Richmond for helpful discus-

sions. Thanks to the anonymous reviewers for very detailed
and thoughtful reviews.

References

Blattner, F. R. et al. (1997). The complete genome se-
quence of Escherichia coli K-12. Science, 277, 1453—-1474.

Brown, M. P. S.; Grundy, W. N., Lin, D., Cristianini, N.,
Sugnet, C., Ares, M., & Haussler, D. (1999). Support
vector machine classification of microarray gene expres-
sion data (TR UCSC-CRL-99-09). Dept. of Computer
Science, University of California, Santa Cruz.

Craven, M., Page, D., Shavlik, J., Bockhorst, J., & Glas-
ner, J. (2000). A probabilistic learning approach to
whole-genome operon prediction. Proc. of the Eighth In-

ternational Conference on Intelligent Systems for Molec-
ular Biology. San Diego, CA. AAAI Press.

Fisen, M. B., Spellman, P. T., Brown, P. O., & Botstein,
D. (1998). Cluster analysis and display of genome-wide
expression patterns. Proc. of the National Academy of
Sciences, USA, 95, 14863—-14868.

Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000).
Using Bayesian networks to analyze expression data.
Proc. of the Fourth Annual International Conf. on Com-
putational Molecular Biology. Tokyo, Japan.

Fu, L., & Buchanan, B. G. (1985). Learning intermediate
concepts in constructing a hierarchical knowledge base.
Proc. of the Ninth International Joint Conference on Ar-
tificial Intelligence (pp. 659-666). Los Angeles, CA.

Jelinek, F., & Mercer, R. L. (1980). Interpolated estima-
tion of Markov source parameters from sparse data. In
E. S. Gelsema and L. N. Kanal (Eds.), Pattern recogni-
tion in practice, 381-397. North Holland.

O’Sullivan, J. (1998). Transferring learned knowledge in a
lifelong learning mobile robot agent. Proc. of the Seventh
FEuropean Workshop on Learning Robots.

Quinlan, J. R. (1993). C4.5: Programs for machine learn-
ing. San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R. (1999). C5.0 decision tree software.
http://www.rulequest.com/.

Riley, M. (1996). E.coli gene products: Physiological func-
tions and common ancestries. In R. Curtiss et al. (Eds.),
Escherichia coli and Salmonella, 2118-2202. American
Society for Microbiology. 2nd edition.

Salgado, H. et al. (2000). RegulonDB (version 3.0): Tran-
scriptional regulation and operon organization in Es-
cherichia coli K-12. Nucleic Acids Research, 28, 65—67.

Salzberg, S., Delcher, A., Kasif, S., & White, O. (1998).
Microbial gene identification using interpolated Markov
models. Nucleic Acids Research, 26, 544-548.

Shapiro, A. (1987). Structured induction in expert systems.
Reading, MA: Addison Wesley.

Stone, P. (1998). Layered learning in multi-agent sys-
tems. Doctoral dissertation, School of Computer Science,
Carnegie Mellon University. TR CMU-CS-98-187.

