1. Prove the claim from the proof of Mather's formula:

If $m \mid n \sim \operatorname{Binomial}(n, 1 / 2)$, then

$$
\operatorname{Pr}(m \text { is odd } \mid n)=\left\{\begin{array}{ccc}
0 & \text { if } & n=0 \\
1 / 2 & \text { if } & n \geq 1
\end{array}\right.
$$

2. Use Mather's formula to derive the map function for the count-location model when the distribution of the number of chiasmata on the four-strand bundle is $\boldsymbol{p}=\left(p_{0}, p_{1}, p_{2}, \ldots\right)$. (Let $L=\sum_{i} i p_{i} / 2$ denote the genetic length of the chromosome.) Show that in the case $p_{n}=\exp (-2 L)(2 L)^{n} / n$!, one obtains the Haldane map function.
3. Show that if the locations of chiasmata on the four-strand bundle follow a Poisson process, then under no chromatid interference, the locations of crossovers on a random meiotic product also follow a Poisson process.
4. Find a combination of chromatid and chiasma interference for which the locations of crossovers on a random meiotic product follow a stationary Poisson process. What do you conclude?
Hint: Use the facts that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent with $X_{i} \sim$ Gamma(shape $=\nu_{i}$, rate $=\lambda$), then $\sum X_{i} \sim \operatorname{Gamma}\left(\sum \nu_{i}, \lambda\right)$, and that $\operatorname{Gamma}(\nu=1, \lambda)=\operatorname{Exponential}(\lambda)$.
