
Problem Set 1 Special topics in genetics and genomics (140.668)
Solutions

1. This is rather a cute problem. If you tossn ≥ 1 fair coins, the chance of obtaining an odd
number of heads is 1/2.

The simplest solution is to use induction.

The casesn = 0 andn = 1 are obvious.

Suppose you tossn + 1 fair coins, wheren ≥ 1. Pr(odd number of heads inn + 1 tosses) =
Pr(odd number of heads inn tosses)× Pr(n + 1st toss is tails) + Pr(even number of heads in
n tosses)× Pr(n + 1st toss is heads) = . . . = 1/2.

2. Consider an interval of lengthd on a chromosome of lengthL.

Let A = {no chiasma in interval} andN = total no. chiasmata on the chromosome.

Map function:M(d) = [1 − Pr(A)]/2

= [1 −
∑

∞

n=0 Pr(N = n andA)]/2

= [1 −
∑

∞

n=0 Pr(N = n) Pr(A|N = n)]/2

= [1 −
∑

∞

n=0 pn(1 − d/L)n]/2

In the casepn = e−2L(2L)n/n!, we obtain:

M(d) = [1 −
∑

∞

n=0
e−2L(2L)n

n!
(1 − d/L)n]/2

=
[

1 −
∑

∞

n=0
1
n!

e−2L[2L(L−d
L

)]n
]

/2

=
[

1 − e−2d
∑

∞

n=0
1
n!

e−2(L−d)[2(L − d)]n
]

/2

= [1 − e−2d]/2

3. Let the chromosome be represented by the interval[0, L].

Consider any finite set of disjoint subintervalsI1, I2, . . . , Ik. Let ni = no. chiasmata in
intervalIi (on the four-strand bundle) andmi = no. crossovers inIi (on a random meiotic
product).

We wish to show that the{mi} are independent andmi ∼ Poisson(|Ii|).

Since the chiasma process is a Poisson process, the{ni} are independent withni ∼ Poisson(2|Ii|).

Under no chromatid interference (NCI), the chiasmata are “thinned” independently with
probability 1/2 to get the crossover process. Since the{ni} are independent and since the
thinning in the disjoint subintervals are independent, it should be clear that the{mi} are
independent.
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So, we havemi|ni ∼ Binomial(ni, 1/2) andni ∼ Poisson(2|Ii|), and we need to show
mi ∼ Poisson(|Ii|). Let d = |Ii| and drop the subscriptsi, to save a few keystrokes.

Pr(m = j) =
∑

∞

k=j Pr(n = k andm = j)

=
∑

∞

k=j Pr(n = k) Pr(m = j|n = k)

=
∑

∞

k=j

e−2d(2d)k

k!

(

k

j

)

(1
2
)k

=
∑

∞

k=j
e−2ddk

k!

(

k!
j!(k−j)!

)

=
(

e−ddj

j!

)

∑

∞

k=j
e−ddk−j

(k−j)!

= e−2ddj/j!

Somi ∼ Poisson(|Ii|), and we’re done.

4. Assume that the first chiamsa involves a random pair of non-sister chromatids, that the next
chiasma involves exactly the opposite pair, and subsequentchiasmata alternate in their choice
of strands. This is strong chromatid interference.

Assume that the locations of chiasmata on the four-strand bundle are according to a station-
ary renewal process with inter-arrival distribution gamma(shape=1/2, rate=1). This is strong
negative chiasma interference.

Recall that ifX1, X2 ∼ iid gamma(shape=1/2, rate=1), thenX1 + X2 ∼ gamma(shape=1,
rate=1)≡ exponential(rate=1).

It should be clear, then, that the locations of crossovers ona random meiotic product follow
a Poisson process, and so exhibit no crossover interference.

What do we conclude? We’ve seen that different combinations of chromatid interference
and chiasma interference can give precisely the same crossover process on a random meiotic
product. Thus, “single-spore” data (that is, data on randomproducts of meiosis) are not
sufficient to infer what’s going on with both strand choice and chiasma location.
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