Problem Set 2
Solutions

1. The easy ones first:

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{IBS}=0 \mid \mathrm{IBD}=2)=0 \\
& \operatorname{Pr}(\mathrm{IBS}=1 \mid \mathrm{IBD}=2)=0 \\
& \operatorname{Pr}(\mathrm{IBS}=2 \mid \mathrm{IBD}=2)=1
\end{aligned}
$$

The IBD $=1$ cases are pretty simple, too:

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{IBS}=0 \mid \mathrm{IBD}=1) & =0 \\
\operatorname{Pr}(\mathrm{IBS}=1 \mid \mathrm{IBD}=1) & =\text { marker heterozygosity } \\
& =1-\sum_{i} p_{i}^{2} \\
\operatorname{Pr}(\mathrm{IBS}=2 \mid \mathrm{IBD}=1) & =\sum_{i} p_{i}^{2}
\end{aligned}
$$

The IBD $=0$ cases are harder. We're taking two random draws from the genotypes

$$
\begin{array}{cccc}
\left(a_{1}, a_{1}\right) & \left(a_{1}, a_{2}\right) & \ldots & \left(a_{1}, a_{k}\right) \\
& \left(a_{2}, a_{2}\right) & \ldots & \left(a_{2}, a_{k}\right) \\
& & \ddots & \vdots \\
& & & \left(a_{k}, a_{k}\right)
\end{array}
$$

with probabilities

$$
\begin{array}{cccc}
p_{1}^{2} & 2 p_{1} p_{2} & \ldots & 2 p_{1} p_{k} \\
& p_{2}^{2} & \ldots & 2 p_{2} p_{k} \\
& & \ddots & \vdots \\
& & & p_{k}^{2}
\end{array}
$$

and we want to find the probability they share 0,1 , or 2 alleles by state.
First:

$$
\begin{aligned}
\operatorname{Pr}(\text { IBS }=2 \mid \text { IBD }=0) & =\operatorname{Pr}[(11,11),(22,22), \ldots,(k k, k k),(12,12),(13,13), \ldots, \text { etc. }) \\
& =\sum_{i} p_{i}^{4}+\sum_{i} \sum_{j: j>i}\left(2 p_{i} p_{j}\right)^{2} \\
\text { [now we simplify] } & =\sum_{i} p_{i}^{4}+2 \sum_{i} p_{i}^{2} \sum_{j: j \neq i} p_{j}^{2} \\
& =\sum_{i} p_{i}^{4}+2 \sum_{i} p_{i}^{2}\left(\sum_{j} p_{j}^{2}-p_{i}^{2}\right) \\
& =\sum_{i} p_{i}^{4}+2\left\{\left(\sum_{i} p_{i}^{2}\right)^{2}-\sum_{i} p_{i}^{4}\right\} \\
& =2\left\{\sum_{i} p_{i}^{2}\right\}^{2}-\sum_{i} p_{i}^{4}
\end{aligned}
$$

The other two are similar; with (painful) simplification, we get:

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{IBS}=1 \mid \mathrm{IBD}=0)=4\left\{\sum p_{i}^{2}+\sum p_{i}^{4}-\sum p_{i}^{3}-\left(\sum p_{i}^{2}\right)^{2}\right\} \\
& \text { and } \operatorname{Pr}(\mathrm{IBS}=0 \mid \mathrm{IBD}=0)=1-4 \sum p_{i}^{2}-3 \sum p_{i}^{4}+4 \sum p_{i}^{3}+2\left(\sum p_{i}^{2}\right)^{2}
\end{aligned}
$$

Note: The biggest issues are the coefficients and the ranges of the summations (e.g., $\sum_{i} \sum_{j: j>i}$ or $\sum_{i} \sum_{j: j \neq i}$ or $\sum_{i} \sum_{j}$). Be precise!

Special case: $p_{1}=p_{2}=p_{3}=p_{4}=1 / 4$.

	IBS		
IBD	0	1	2
0	$21 / 64$	$36 / 64$	$7 / 64$
1	0	$3 / 4$	$1 / 4$
2	0	0	1

2. Let $M=$ parental mating type, $G=$ kids' genotypes, and $\mathrm{DSP}=$ "discordant sibpair."

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{IBD}=v \mid \mathrm{DSP}) & =\sum_{M, G} \operatorname{Pr}(\mathrm{IBD}=v \mid M, G, \mathrm{DSP}) \operatorname{Pr}(G \mid M, \mathrm{DSP}) \operatorname{Pr}(M \mid \mathrm{DSP}) \\
& =\sum_{M, G} \operatorname{Pr}(\mathrm{IBD}=v \mid M, G) \operatorname{Pr}(G \mid M, \mathrm{DSP}) \operatorname{Pr}(M \mid \mathrm{DSP})
\end{aligned}
$$

Calculating $\operatorname{Pr}(M \mid \mathrm{DSP})$ is similar to that for the affected sibpair, as calculated in class:

M	$\operatorname{Pr}(M)$	$\operatorname{Pr}(\mathrm{DSP} \mid M)$	$\operatorname{Pr}(M \mid$ DSP $)$	$\begin{gathered} \operatorname{Pr}(M \mid \mathrm{DSP}) \\ \text { when } p=0.05 \\ \hline \end{gathered}$
$\mathrm{DD} \times \mathrm{Dd}$	$4 p^{3}(1-p)$	1/2	$\alpha \cdot 2 p^{3}(1-p)$	~ 0.0656
$\mathrm{Dd} \times \mathrm{Dd}$	$4 p^{2}(1-p)^{2}$	3/8	$\alpha \cdot(3 / 2) p^{2}(1-p)^{2}$	~ 0.9344

where $\alpha=1 /\left[2 p^{3}(1-p)+(3 / 2) p^{2}(1-p)^{2}\right]$
Then we calculate $\operatorname{Pr}(G \mid M, \mathrm{DSP})$ and $\operatorname{Pr}(\operatorname{IBD}=v \mid M, G)$ for all possible M, G :

			$\operatorname{Pr}(\mathrm{IBD}=v \mid M, G)$		
M	G	$\operatorname{Pr}(G \mid M, \mathrm{DSP})$	0	1	2
DD \times Dd	DD,Dd	1	$1 / 2$	$1 / 2$	0
Dd \times Dd	DD,Dd	$2 / 3$	0	1	0
Dd \times Dd	DD,dd	$1 / 3$	1	0	0

We then sum up to get $\operatorname{Pr}(\operatorname{IBD}=v \mid \mathrm{DSP})$:

0	1	2
0.344	0.656	0

3. Let $K=\mathrm{IBD}$ status at disease gene and $X=\mathrm{IBD}$ status at marker.

$$
\begin{aligned}
\operatorname{Pr}(X=v \mid \mathrm{DSP}) & =\sum_{k} \operatorname{Pr}(X=v \mid \mathrm{DSP}, K=k) \operatorname{Pr}(K=k \mid \mathrm{DSP}) \\
& =\sum_{k} \operatorname{Pr}(X=v \mid K=k) \operatorname{Pr}(K=k \mid \mathrm{DSP})
\end{aligned}
$$

For $r=0.05$, the transition matrix $\operatorname{Pr}(X=x \mid K=k)$ is the following:

	X		
K	0	1	2
0	0.819	0.172	0.009
1	0.086	0.828	0.096
2	0.009	0.172	0.819

Note that the rows sum to 1 .
We multiply each row by the result for $\operatorname{Pr}(K=k \mid \mathrm{DSP})$ from problem 1, and obtain the following for $\operatorname{Pr}(X=x \mid \mathrm{DSP})$.

0	1	2
0.338	0.602	0.059

