Classification of Gene Expression Profiles

BMI/CS 576
www.biostat.wisc.edu/bmi576/
Mark Craven
craven@biostat.wisc.edu
November 2003

Classifying Gene Expression Profiles: The Learning Task

• **given:**
 – a fixed set of classes of interest
 – expression profiles for a set of genes or experiments/individuals/time points (whatever columns represent) each labeled with its corresponding class

• **do:** induce a model that is able to predict a class label for any given expression profile (hopefully with high accuracy)
Classifying Gene Expression Profiles: The Classification Task

- **given:**
 - a model that is able to predict a class label for any given expression profile
 - expression profiles whose classes are not known

- **do:** predict a class label for each of the expression profiles (hopefully with high accuracy)

Molecular Classification of Cancer

- Golub et al., *Science* 1999
- the first published application of supervised learning methods to microarray data
- measured activity of 6817 genes in 38 leukemia patients using Affymetrix chips
- patients had one of two types of leukemia, *acute lymphoblastic leukemia* (ALL) or *acute myeloid leukemia* (AML)
Molecular Classification of Cancer

- learning task
 - given: expression profiles of leukemia patients
 - do: learn a model for distinguishing AML vs. ALL patients from expression data

- classification task
 - given: learned model, expression profile of a new patient
 - do: predict whether the patient has AML or ALL

Golub et al.’s Prediction Approach

- rank genes by their correlation with class variable (AML/ALL)
- select subset of “informative” genes
- have these genes do a weighted vote to classify a previously unseen patient
Ranking Genes

- split the expression values for the ith gene into two pools – one for each class
- determine the mean μ_i and standard deviation σ_i of each pool
- rank genes by:

$$\text{weight}(i, c) = \frac{\mu_i^{\text{ALL}} - \mu_i^{\text{AML}}}{\sigma_i^{\text{ALL}} + \sigma_i^{\text{AML}}}$$

- where c indicates which class the weight is associated with (ALL for +ve values, AML for −ve)

Selecting Genes

- select the k_{ALL} top ranked genes (highly expressed in ALL) and the k_{AML} bottom ranked genes (highly expressed in AML)

$$\text{weight}(i, c) = \frac{\mu_i^{\text{ALL}} - \mu_i^{\text{AML}}}{\sigma_i^{\text{ALL}} + \sigma_i^{\text{AML}}}$$
Informative Genes

Weighted Voting

• suppose that x_i is the normalized expression level measured for the ith gene in a given patient

$$V = \text{weight}(i, c) \times \left(x_i - \frac{\mu_i^{\text{ALL}} + \mu_i^{\text{AML}}}{2} \right)$$

distance from the measurement to the class boundary
Weighted Voting

- the vote V is assigned to a particular class depending on its sign

 $$V_{ALL}^+ = V \quad \text{if } V > 0$$
 $$V_{AML}^+ = |V| \quad \text{if } V < 0$$

Prediction Strengths

- can assess the “strength” of a prediction as follows:

 $$PS = \frac{V_{\text{winner}} - V_{\text{loser}}}{V_{\text{winner}} + V_{\text{loser}}}$$

 where V_{winner} is the summed vote for the winning class,
 and V_{loser} is the summed vote for the losing class
Prediction Strengths

- when classifying new cases, can pass (no-call) on cases where the strength of the prediction does not exceed a threshold

\[
\text{prediction} = \begin{cases}
\text{ALL} & \text{if } V_{\text{ALL}} > V_{\text{AML}}, PS > \theta \\
\text{AML} & \text{if } V_{\text{AML}} > V_{\text{ALL}}, PS > \theta \\
\text{no-call otherwise}
\end{cases}
\]

Two Experiments

- *cross validation* with the original set of patients for i=1 to 38
 - hold the ith patient aside
 - use other 37 patients to determine weights
 - with this set of weights, make prediction on the ith gene

- train on all 38 patients, test on a *separate* set of 34 patients
Golub et al. Experimental Results

- cross-validation experiments
 - all trials that used at least 3 genes had 0 prediction errors, with 1-4 no-calls

- using the 50-gene model on a test set of 34 additional patients
 - 29 correct predictions
 - 5 no-calls

Breast Cancer Outcomes Prediction

- microarray and clinical data from 86 lymph-node positive breast cancer patients
 - 12,625 genes measured using Affymetrix arrays
- goal is to distinguish between high risk (recurrence w/in 5 years) and low risk (recurrence-free for 5 years)
Calculating “Metagenes”

- the features used in their model are not mRNA measurements from individual genes
- instead they compute “metagenes”, which consist of linear combinations of gene measurements
- procedure
 - ran k-means clustering (with $k=500$) on original microarray data set
 - computed first principal component of each cluster
 - each of these principal components becomes a metagene

A Decision Tree Classifier

- low risk/high risk cases in training set that reach this node
- smoothed probability estimate of high risk
- outcome of test at internal node above
Decision Tree Classifiers

- tree-based classifiers partition the data using axis-parallel splits

Inducing Tree-Based Classifiers

- there are many decision-tree learning methods
- two most common are
 - C4.5 (Quinlan)
 - CART (Breiman, Friedman, Olshen, Stone)
- Nevins et al. use their own method
- all DT learning methods have the same basic algorithm structure, recursively grow a tree top-down
Generic DT Induction Pseudocode

MakeSubtree(set of instances I)
 if stopping criteria met
 make a leaf node N
 determine class label/probabilities for N
 else
 make an internal node N
 select best splitting criterion for N
 for each outcome k of the split
 I_k = subset of instances that have outcome k
 kth child of N = MakeSubtree(I_k)
 return subtree rooted at N

Final Comments Gene
Expression Analysis

- we discussed two computational tasks
 classification: do this when you do know the categories of interest
 clustering: do this when you don’t know the categories of interest
- class discovery is an interesting task that falls between classification and clustering
 - identify classes of profiles that don’t seem to fit into any of the modeled categories
 - e.g. new subtypes of cancer, new types of toxic substances
Final Comments Gene Expression Analysis

- there are other interesting statistical/computational tasks we didn’t cover
 - designing microarray experiments
 - reducing noise in microarray data sets
 - deciding when genes are differentially expressed across two or more conditions
 - inferring networks of interacting genes and the “programs” that govern them