Distance-based methods for phylogenetic tree reconstruction

Colin Dewey
BMI/CS 576
www.biostat.wisc.edu/bmi576/
colin.dewey@wisc.edu
Fall 2015
Basic idea of distance-based methods

• Suppose we can compute a “distance”, d_{ij}, between each pair of taxa based on some data (e.g., sequences)
• Can we come up with a tree structure (with lengths assigned to branches) that accurately reflect the pairwise distances?

$$d_{15} = L_{16} + L_{68} + L_{58}$$
Distance-based methods for phylogenetic tree reconstruction

- Given $n \times n$ distance matrix for n units, construct the tree for these n units
- Algorithms
 - UPGMA
 - Neighbor joining
- Assume additivity and sometimes a “molecular clock”
- Additivity means we can add up the branch lengths of the tree connecting two nodes and get their distances
 - In other words, “additivity” of the distances means that there exists some tree that perfectly explains these distances
Defining distance between sequences

• Fractional alignment mismatch for two sequences i and j

 $- p_{ij} = m_{ij}/L_{ij}$

 • Gives an estimate of changes per site

 $- m_{ij}$: Number of mismatches between sequences i and j

 $- L_{ij}$: Number of aligned positions between sequences i and j

 • Assumes that changes have happened only once

 • Underestimates the distance between sequences

• Jukes Cantor distance

 $-$ Removes assumption above

 $- The simplest evolutionary distance d_{ij} between sequences i and j, where p_{ij} is the fractional mismatch defined above

 $$d_{ij} = - \frac{3}{4} \ln(1 - \frac{4}{3} p_{ij})$$
UPGMA algorithm for phylogenetic tree reconstruction

- UPGMA: Unweighted pair group method using arithmetic averages
- Represent all sequences as the leaf nodes of a tree
- Start with just the leaf nodes
- At each step, merge two closest nodes to create a new node in the tree
 - Set new node at height determined by nodes being merged
 - Recompute distance between new node and all other nodes
- Intermediate nodes will correspond to a set of sequences
- We will call sequences associated with an intermediate node i cluster C_i
- Need to compute
 - Distance between two clusters of sequences
 - Height
Computing distance between clusters

- Let i and j be two nodes
- Let C_i be the cluster of sequences for node i
- Let C_j be the cluster of sequences for node j
- $|C_j|$: Number of sequences in C_j
- Distance between nodes i and j

$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d_{pq}$$
Computing distance from a new node

- Let k be a new node to be created from merging i and j
- Let C_i be the cluster of sequences for node i
- Let C_j be the cluster of sequences for node j
- Distance d_{kl} between nodes k and l, $l \neq i$ and $l \neq j$

\[
d_{kl} = \frac{1}{|C_k||C_l|} \sum_{p \in C_k, q \in C_l} d_{pq}
\]

- This is equal to

\[
d_{kl} = \frac{d_{il}|C_i| + d_{jl}|C_j|}{|C_i| + |C_j|}
\]
UPGMA algorithm

• Input
 – n sequences
 – Distance matrix for all pairs of n sequences, d_{ij}

• Output
 – Tree T

• Initialization
 – Assign each sequence i to its own cluster C_i
 – Define one leaf of T for each sequence

• Iterate until only two clusters remain
 – Find two nodes C_i and C_j that have the smallest d_{ij}
 – Define new cluster $C_k = C_i \cup C_j$
 – Define daughters of k as i and j, place at height $d_{ij}/2$
 – Add k to cluster set. Remove i and j from the set of clusters

• Terminate
 – When only two clusters C_i and C_j remain, place root at $d_{ij}/2$
UPGMA example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial state

<table>
<thead>
<tr>
<th></th>
<th>AE</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After one merge

Example calculation

\[
d_{(A,E)B} = \frac{d_{AB} + d_{EB}}{1 + 1} = \frac{16}{2}
\]
UPGMA example (cont.)

after two merges

<table>
<thead>
<tr>
<th></th>
<th>AE</th>
<th>BC</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>BC</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

after three merges

<table>
<thead>
<tr>
<th></th>
<th>AED</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AED</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>BC</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

final state
UPGMA relies on the molecular clock assumption

- Sequences diverge at the same rate at all points in the phylogeny
- Distance from any leaf to root is the same.
- If this is true the distances are said to have an “ultrametric” property
- This assumption is rarely true in practice
The molecular clock assumption & ultrametric data

- Ultrametric data: for any triplet of sequences, i, j, k, the distances are either all equal, or two are equal and the remaining one is smaller.
Problem with UPGMA when the molecular clock assumption does not hold

Actual tree

![Actual tree](image1)

Constructed by UPGMA

![Constructed by UPGMA](image2)
Neighbor joining

- The assumption about the ultra-metric property is too strong
 - Most sequences diverge at different rates
- A more relaxed requirement is that of additivity
 - Distance between a pair of species/nodes is equal to the sum of the branch lengths
- Neighbor Joining (NJ) Uses a similar idea to construct trees as UPGMA
 - That is, consider pairs of nodes and joins them
- Produces unrooted trees
How to select nodes for joining?

- Given all pairwise distances for n sequences
- d_{ij} denote the distance between node i and j
- Should we select node pairs with the smallest d_{ij}?

This will give us an incorrect tree
Selecting nodes to join

- Neighbor joining requires us to correct the distance to account for distances from all other nodes.
- The corrected distance is denoted as D_{ij}

$$D_{ij} = d_{ij} - (r_i + r_j)$$

$$r_i = \frac{1}{L-2} \sum_{1 \leq k \leq L} d_{ik}$$

L: number of leaves

r_i: “Average” distance from all other leaves
Defining the distance to a new node

Given \(d_{ij}, d_{im}, d_{jm}\), how to calculate distance of existing node \(m\) to new node \(k\)?

\[
d_{km} = \frac{d_{im} + d_{jm} - d_{ij}}{2}
\]
Updating Distances in Neighbor Joining

- can calculate the distance from a leaf to its parent node in the same way

\[
d_{ik} = \frac{1}{2} (d_{ij} + d_{im} - d_{jm})
\]

\[
d_{jk} = d_{ij} - d_{ik}
\]
Updating Distances in Neighbor Joining

- we can generalize this so that we take into account the distance to all other leaves

\[d_{ik} = \frac{1}{2} (d_{ij} + r_i - r_j) \]

where

\[r_i = \frac{1}{|L| - 2} \sum_{m \in L} d_{im} \]

and \(L \) is the set of leaves

- this is more robust if data aren’t strictly additive
Algorithm for NJ

• Initialization
 – T be set the of leaf nodes
 – $L = T$
 – Compute r_i for all i in L
 – Compute D_{ij}

• Iteration
 – Pick a pair i, j from L such that D_{ij} is smallest
 – Define new node k
 – Compute d_{ik}, d_{jk}, add edge between k and i, and between k to j
 – Add k to L, remove i and j from L
 – Compute D_{mn} for all nodes m, n in L

• Terminate
 – If L has two nodes, add the edge between these two.
Can we check for additivity?

Check for additivity: For four leaves, \(i, j, k, l\) and the distances \(d_{ij}, d_{ik}, d_{il}, d_{jk}, d_{jl}, d_{kl}\)

The three sums of two distances

Should be such that two of these are equal, and larger than the third.
Comparing NJ and UPGMA

- **UPGMA**
 - Rooted tree
 - Assumptions: Molecular clock assumption/ultrametric distance and additivity

- **NJ**
 - Unrooted tree
 - Assumption: Additivity
Rooting a tree

- An unrooted tree can be converted to a rooted tree using an outgroup species.
- Outgroup: a species known to be more distantly related to all the species than each of the species themselves.
- Find the branch where the outgroup is selected to be added.
- That gives the root.

![Diagram of a rooted tree with an outgroup.]