Parsimony-Based Approaches to Inferring Phylogenetic Trees

BMI/CS 576
www.biostat.wisc.edu/bmi576/
Colin Dewey
colin.dewey@wisc.edu
Fall 2016
Phylogenetic Tree Approaches

• three general types
 – *distance*: find tree that accounts for estimated evolutionary distances
 – *parsimony*: find the tree that requires minimum number of changes to explain the data
 – *probabilistic-model based*: find the tree that maximizes the likelihood of the data
Parsimony Based Approaches

given: character-based data

do: find tree that explains the data with a minimal number of changes

• focus is on finding the right tree topology, not on estimating branch lengths
Parsimony Example

- There are various trees that could explain the phylogeny of the sequences \textit{AAG, AAA, GGA, AGA} including these two:

- Parsimony prefers the first tree because it requires fewer substitution events.
Parsimony Based Approaches

• usually these approaches involve two separate components
 1. a procedure to find the minimum number of changes
 needed to explain the data (for a given tree topology)
 2. a search through the space of trees
Finding Minimum Number of Changes for a Given Tree

– Basic assumptions:
 • any character state (e.g. a particular base or amino acid) can convert to any other character state
 • the “cost” of any single character state change is the same, regardless of the particular states
 • positions are independent
 – Thus, we can compute the minimum number of changes for each position separately
Finding Minimum Number of Changes for a Given Tree

• Brute force method:
 – For each possible assignment of states to the internal nodes
 • Calculate number of changes for that assignment
 – Report the minimum number of changes found

• Runtime: $O(Nk^N)$
 – $k =$ number of possible character states (e.g., 4 for DNA)
 – $N =$ number of leaves
Fitch’s Algorithm

Fitch’s algorithm [1971]:

1. traverse tree from leaves to root determining set of possible states (e.g. nucleotides) for each internal node

2. traverse tree from root to leaves picking ancestral states for internal nodes
Fitch’s Algorithm: Step 1
Possible States for Internal Nodes

- do a post-order (from leaves to root) traversal of tree
- determine possible states R_i of internal node i with children j and k

$$R_i = \begin{cases} R_j \cup R_k, & \text{if } R_j \cap R_k = \emptyset \\ R_j \cap R_k, & \text{otherwise} \end{cases}$$

- this step calculates the number of changes required
 $\# \text{ of changes} = \# \text{ union operations}$
Fitch’s Algorithm: Step 1 Example

\[
\{C, T\} \cap \{A, G, T\} = \{T\}
\]

\[
\{C\} \cup \{T\} = \{C, T\}\]

\[
\{C\} \cup \{T\} = \{C, T\}\]

\[
\{C\} \cup \{T\} = \{GT\}\]

\[
\{C\} \cup \{T\} = \{AGT\}\]

\[
\{C\} \cup \{T\} = \{AT\}\]
Fitch’s Algorithm: Step 2
Select States for Internal Nodes

- do a *pre-order* (from root to leaves) traversal of tree
- select state r_j of internal node j with parent i

$$r_j = \begin{cases} r_i, & \text{if } r_i \in R_j \\ \text{arbitrary state} \in R_j, & \text{otherwise} \end{cases}$$
Fitch’s Algorithm: Step 2
Weighted Parsimony

- [Sankoff & Cedergren, 1983]
- instead of assuming all state changes are equally likely, use different costs $S(a, b)$ for different changes
- 1st step of algorithm is to propagate costs up through tree

$a \rightarrow b$
Weighted Parsimony

- Dynamic programming!
- Subproblem: want to determine minimum cost $R_i(a)$ for the subtree rooted at i of assigning character a to node i
- for leaves:

$$R_i(a) = \begin{cases}
0, & \text{if } a \text{ is character at leaf} \\
\infty, & \text{otherwise}
\end{cases}$$
Weighted Parsimony

- for an internal node i with children j and k:

$$R_i(a) = \min_b (R_j(b) + S(a,b)) + \min_c (R_k(c) + S(a,c))$$
Example: Weighted Parsimony

\[
R_3[A] = \infty, R_3[C] = \infty, R_3[G] = 0, R_3[T] = \infty
\]

\[
R_4[A] = \infty, R_4[C] = \infty, R_4[G] = \infty, R_4[T] = 0
\]

\[
\]

\[
\]

\[
R_5[A] = 0, R_5[C] = \infty, R_5[G] = \infty, R_5[T] = \infty
\]

\[
R_1[A] = \min \left(R_2[A] + S(A, A), \ldots, R_2[T] + S(A, T) \right) + R_5[A] + S(A, A)
\]

\[
R_1[T] = \min \left(R_2[A] + S(T, A), \ldots, R_2[T] + S(T, T) \right) + R_5[A] + S(T, A)
\]
Weighted Parsimony: Step 2

- do a pre-order (from root to leaves) traversal of tree
- for root node:
 - select minimal cost character
- for each other internal node:
 - select the character that resulted in the minimum cost explanation of the character selected at the parent (could use traceback pointers)
Weighted Parsimony Example

Consider the two simple phylogenetic trees shown below, and the symmetric cost matrix for assessing nucleotide changes. The tree on the right has a cost of 0.8.

What are the minimal cost characters for the internal nodes in the tree on the left?

Which of the two trees would the maximum parsimony approach prefer?
The minimal cost character for node 1 is either \(g \) or \(t \). The minimal cost character for node 3 is \(g \). The maximum parsimony approach would prefer the other tree, because it has a smaller cost (0.8).
Exploring the Space of Trees

- we’ve considered how to find the minimum number of changes for a given tree topology
- need some search procedure for exploring the space of tree topologies
 - How do we move from one tree to another?
 - How do we ensure that we fully explore the space of trees?
Heuristic Method: Nearest Neighbor Interchange

- for any internal edge in a tree, there are 3 ways the four subtrees can be grouped.
- nearest neighbor interchanges move from one grouping to another.
Heuristic Method: Hill-climbing with Nearest Neighbor Interchange

given: set of leaves \(L \)
create an initial tree \(t \) incorporating all leaves in \(L \)
\(\text{best-score} = \text{parsimony algorithm applied to } t \)
repeat

for each internal edge \(e \) in \(t \)

for each nearest neighbor interchange

\(t' \leftarrow \text{tree with interchange applied to edge } e \) in \(t \)

\(\text{score} = \text{parsimony algorithm applied to } t' \)

if \(\text{score} < \text{best-score} \)

\(\text{best-score} = \text{score} \)
\(\text{best-tree} = t' \)

\(t = \text{best-tree} \)
until stopping criteria met (e.g., \(\text{best-tree} \) does not change)
Exact Method: Branch and Bound

- each partial tree represents a set of complete trees
- the parsimony score on a partial tree provides a *lower bound* on the best score in the set

search by repeatedly selecting the partial tree with the lowest *lower bound*
Exact Method: Branch and Bound

given: set of leaves L
initialize a queue Q with a partial tree with 3 leaves from L
repeat
 $t \leftarrow$ tree in Q with lowest lower bound
 if t has incorporated all leaves in L
 return t
 else
 create new trees by adding next leaf from L to each branch of t
 compute lower bound for each tree
 put trees in Q sorted by lower bound
Branch and Bound (Alternate Version)

given: set of leaves L

use heuristic method to grow initial tree t'

initialize Q with a partial tree with 3 leaves from L

repeat

$t \leftarrow$ tree in Q with lowest lower bound

if t has incorporated all leaves in L

return t

else

create new trees by adding next leaf from L to each branch of t

for each new tree n

if lower-bound(n) $<$ score(t')

put n in Q sorted by lower bound
Implementing Branch and Bound (Second Alternate Version)

\[i_3 \]

\[i_5 \]
Implementing Branch and Bound (Second Alternate Version)

- for \(n \) sequences, maintain an array of counters

\[
[i_3][i_5][i_7]...[i_{2n-5}]
\]

where \(i_k \) takes on values 0…\(k \)
- a complete tree is represented by an assignment of all \(i_k \) to non-zero values
- \(i_k \) indicates, for a partial tree with \(k \) edges, on which edge to add a branch for the next sequence
- \(i_k = 0 \) indicates a partial tree
Implementing Branch and Bound

- to search space, roll counters through their allowable numbers (somewhat) like an odometer
 - rightmost counter moves fastest
 - whenever a counter is 0, all counters to the right of it must be 0 also
 - test cost of (partial) tree at each tick of odometer
 - have odometer skip when pruning occurs

\[[i_3][i_5][i_7] \ldots [i_{2n-5}] \]
Implementing Branch and Bound

consider a case with 5 sequences

explored all descendents of this tree

pruned after considering this partial tree

explored all descendents of this tree

counters went:

\[
\begin{bmatrix}
i_3 \\ i_5
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4 \\
1 & 5 \\
2 & 0 \\
3 & 0 \\
3 & 1 \\
3 & 2 \\
3 & 3 \\
3 & 4 \\
3 & 5
\end{bmatrix}
\]
Comments on Branch and Bound

- It is a complete search method
 - Guaranteed to find optimal solution
- May be much more efficient than exhaustive search
- In the worst case, it is no better
- Efficiency depends on
 - The tightness of the lower bound
 - The quality of the initial tree
Rooted or Unrooted Trees for Parsimony?

• we described parsimony calculations in terms of rooted trees
• but we described the search procedures in terms of unrooted trees

• *unweighted parsimony*: minimum cost is independent of where root is located
• *weighted parsimony*: minimum cost is independent of root if substitution cost is a *metric*