Probabilistic methods for phylogenetic tree reconstruction

BMI/CS 576
www.biostat.wisc.edu/bmi576
Colin Dewey
colin.dewey@wisc.edu
Fall 2016
Downsides to parsimony methods

• Scoring function parameters (costs for substitutions) are rather arbitrary
 – The most “parsimonious” tree critically depends on these parameters

• Parsimony methods require assignments of character states to the ancestral nodes
 – Only considers score of best assignment, which may not be the true one
Alternative to parsimony: probabilistic-model based tree scoring

• Instead of cost $S(a,b)$ of a substitution occurring along a branch, we will use a probability $P(child = a \mid parent = b)$

• For a given tree, instead of finding a *minimal cost assignment* to the ancestral nodes, we will *sum the probabilities of all possible ancestral states*

• Instead of finding a tree with *minimum cost* will will find a tree the *maximizes likelihood* (probability of the data given the tree)
Probabilistic model setup

• We observe \(n \) sequences, \(x^1, \ldots, x^n \)

• We are given a tree \(T \) and want to model \(P(x^1, \ldots, x^n | T) \)
 – This is the likelihood (probability of the observed sequences given the model, the tree)

• For simplicity, we’ll just consider the case that our sequences are of length 1 (just one character)

• To generalize to longer sequences, we assume independence of each position (each column of an ungapped multiple alignment)
 – Probability of sequences = product of probability of each position/column
Probabilistic model details

- It will be easier to first consider a model in which we represent the states of the internal nodes of the tree with random variables: $X^{n+1}, \ldots, X^{2n-1}$ (assuming rooted binary tree).
- Then the probability of any particular configuration of states at all nodes in the tree will be defined as

$$P(x^1, \ldots, x^{2n-1} \mid T) = q_{x^{2n-1}} \prod_{i=1}^{2n-2} P(x^i \mid x^{\alpha(i)})$$

- $q_{x^{2n-1}}$ is the prior probability of the state of the root node.
- $\alpha(i)$ is the index of the parent node of node i.
- Key assumption: state of node i is conditionally independent of the states of its ancestors given the state of its parent.
- For simplicity, we are ignoring branch lengths for now.
The likelihood

• We only care about the probability of the observed (extant) sequences

• Need to marginalize (sum over possible values of ancestral states) to obtain the likelihood

\[
P(x^1, \ldots, x^n | T) = \sum_{x^{n+1}, \ldots, x^{2n-1}} \prod_{i=1}^{2n-2} q_{x^{2n-1}} P(x^i | x^{\alpha(i)})
\]

• But there is an exponential number of terms in this sum!
Felsenstein’s algorithm

• Dynamic programming to the rescue once again!
• Subproblem: \(P(L_k \mid a) \): probability of the leaves below node \(k \), given that the residue at \(k \) is \(a \)
• Recurrence:

\[
P(L_k \mid a) = \sum_{b,c} P(b \mid a) P(L_i \mid b) P(c \mid a) P(L_j \mid c)
\]

\[
= \sum_b P(b \mid a) P(L_i \mid b) \sum_c P(c \mid a) P(L_j \mid c)
\]

• where \(i \) and \(j \) are the children nodes of \(k \)
• \(b \) and \(c \) represent the states of node \(i \) and node \(j \), respectively
Felsenstein’s algorithm

• Initialize: $k=2n-1$

• Recursion:
 – If k is a leaf node,
 $$P(L_k | a) = \begin{cases} 1 & \text{if } a = x^k \\ 0 & \text{otherwise} \end{cases}$$
 – Else, compute $P(L_i | a)$ and $P(L_j | a)$ for all a at daughters i and j
 $$P(L_k | a) = \sum_b P(b | a) P(L_i | b) \sum_c P(c | a) P(L_j | c)$$

• Termination
 – Likelihood is equal to
 $$\sum_a P(L^{2n-1} | a) q_a$$
Concluding remarks on probabilistic-model (likelihood) based approach

• Very similar to the weighted parsimony case
 – Main differences are at
 • Leaf nodes
 • Minimization versus summation for internal nodes

• Can it be used to infer ancestral states as well?
 – Instead of summing, we would maximize
 – As in the parsimony case, we would need to keep track of the maximizing assignment

• Substitution probabilities $P(a|b)$ can be derived from principled mathematical models and/or estimated from data
What is probability for the following set of residues

Assume the above conditional probability matrix $P(b|a)$ for all branches
The probabilities computed for each node

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(L_1</td>
<td>x))</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P(L_2</td>
<td>x))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P(L_3</td>
<td>x))</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(P(L_4</td>
<td>x))</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(P(L_5</td>
<td>x))</td>
<td>0.0058</td>
<td>0.0022</td>
<td>0.0154</td>
</tr>
</tbody>
</table>

Probability of sequence given tree is \(0.25 \times (0.0058 + 0.0022 + 0.0154 + 0.0058) = 0.0073 \)