Announcements 5/2

• Read Lathrop and Smith (1996)
 – Protein threading

• HW4 updates
 – Part 1: use generalized suffix tree
 – Part 3A: test example_graph.txt with k=7
 – Part 3A: multiple equivalent solutions with cost of 26

• Project report guidelines posted
 – Emphasis on interpretation of results
 – Pay attention to the rubric
Final exam

- Final exam Sunday May 7 at 2:45 PM
- Similar style as midterm exam
- No printed materials allowed
- Will not execute algorithms by hand
 - Do need to understand optimization, objectives, etc.
- Almost all emphasis is on material not covered on midterm
 - 7 themes: Noncoding variants to protein threading
 - May need prior material for comparisons, context
- *Slightly* more emphasis on material not covered on homework
Final exam

• Content includes (but is not limited to) material from lecture and required reading
 – Syllabus lists topics and require reading

 Large-Scale and Whole-Genome Sequence Alignment

 • topics: large-scale alignment, whole-genome alignment, suffix trees, k-mer tries, longest increasing subsequence problem, MUMmer
 • required reading

 – Focus on high-level concepts for generalized HMMs, pair HMMs, multiple large-scale sequence alignment, RNA structure energy-minimization
 – Optional reading is also helpful
Final exam

• Focus on concepts, strengths/weaknesses, algorithmic strategies
 – Why or in what cases would we use one method or experimental technology instead of another?
 – How does method X compare to method Y and what are the unique advantages of each?
 – What is important concept Z?
 – What does a method optimize?
 – What assumptions does a method make and what input does it require?
Final exam

• Examples
 – What is the difference in the objective function for the Nussinov and energy-minimization dynamic programming algorithms? Why is one preferable?
 – What is the difference between two Markov model or hidden Markov model variants?
 – Given these types of data, how do we use algorithms and ideas from lecture to model them?
Final exam

• Class evaluation incentive
• Will post specific sub-problem topics at particular completion thresholds
 – 2 problems for 13 / 16 completion
 – 2 problems for 16 / 16 completion
• Example from midterm:
 – Problem 2A: MEME and Gibbs sampling
 – Problem 2E: multiple testing
 – Problem 3A: Dirichlet prior