Agenda Today

• Introductions
• Course information
• Overview of topics
Course Web Site

- www.biostat.wisc.edu/bmi776/
- Syllabus and policies
- Readings
- Tentative schedule
- Lecture slides (draft posted before lecture)
- Announcements
- Homework
- Project information
- Link to Piazza discussion board
Your Instructor: Daifeng Wang

- Email: daifeng.wang@wisc.edu
- Website: https://daifengwanglab.org/
- Office: Waisman Center 517
- Class Location: 2534 Engineering Hall
- Class Times: Tue/Thu 1:00 – 2:15 pm CST
- Office for Office Hours: Medical Sciences Center 6740
- Office Hours: Tues 2:30-3:30pm, Thus 2:30-3:30pm CST

- Assistant Professor in the Department of Biostatistics & Medical Informatics and Investigator in Waisman Center

- Research interests: interpretable machine learning, network biology, functional genomics, comparative genomics, brain diseases, precision medicine
My research in Waisman Center

• Mission of Waisman Center
 – *Advance knowledge about human development, developmental disabilities, and neurodegenerative diseases*

• Goal of my research

https://www.waisman.wisc.edu/2020/01/07/new-researcher-uses-machine-learning-to-decode-genomic-information/
Finding My Office:
517 Waisman Center

- Far away, most west building
- Take No. 80 Bus or Bike/Walk for exercise
Finding the Office for in-person Office Hours: MSC 6740

- **very** confusing building
- best bet: use **420 North Charter St entrance**
Course TA: Saniya Khullar

- Email: skhullar2@wisc.edu
- Skype: saniya0605
- Office Hours (1 virtual, 1 in-person Office Hour):
 - Virtual: Fridays 9 am to 10 am CST (https://zoom.us/j/2593679726)
 - In-person: Mondays 9 a.m. to 10 a.m. CST in Waisman 520
 - Available by appointment as well
- Ph.D. candidate
 - Biomedical Data Science
- Educational YouTube channel (with content related to Advanced Bioinformatics and Beyond):
 https://www.youtube.com/c/SaniyaKhullar
Course TA: Ting Jin

- Email: tjin27@wisc.edu
- Ph.D. student
 - Biomedical Data Science
- Office Hours (Virtual)
 - Friday: 10 – 11am (Zoom)
- Grading student assignments and providing feedback

Our Course TAs are here to help support you!
Please do reach out with any questions!
Office Hours

• Tue 2:30-3:30pm, Thu 2:30-3:30pm
 – MSC 6740
• Will begin next week
• Free to schedule an individual meeting
 – Waisman Center or Zoom
• You are encouraged to visit our office hours!
You

• So that we can all get to know each other better, please tell us your (by email)
 – name
 – major or graduate program
 – research interests and/or topics you’re especially interested in learning about
 – favorite programming language
Course Requirements

• 4 homework assignments: ~40%
 – Written exercises
 – Programming (Python)
 – Computational experiments (e.g. measure the effect of varying parameter x in algorithm y)
 – Five late days permitted

• Project: ~25%
• Midterm: ~15%
• Final exam: ~15%
• Class participation: ~5%
Exams

• Midterm: Thursday, March 10, in class
• Final: Monday May 8, 10:05 AM – 12:05 PM

• Let me know immediately if you have a conflict with either of these exam times
Computing Resources for the Class

• Linux servers in Dept. of Biostatistics & Medical Informatics
 – No “lab”, must log in remotely (use WiscVPN)
 – Will create accounts for everyone on course roster
 – Two machines
 mi1.biostat.wisc.edu
 mi2.biostat.wisc.edu
 – HW0 tests your access to these machines
 – Homework must be able to run on these machines

• Resources:
 – TA Saniya prepared a video on working on a remote server (pushing, pulling, running files remotely to Biostat servers, WiscVPN): Video Link along with other helpful videos on Servers
 – CS department usually offers Unix orientation sessions at beginning of semester
Programming Assignments

• All programming assignments require Python
 – Project can be in any language

• Have a Python 3 environment on biostat servers
 – Permitted packages on course website
 – Can request others

• HW0 will be Python introduction

• Use Piazza for Python discussion
 – If you know Python, please help answer questions
Project

• Design and implement a new computational method for a task in molecular biology
• Improve an existing method
• Perform an evaluation of several existing methods
• Run on real biological data
• Suggestions will be provided
• Not simply your existing research
• Can email me now to discuss ideas
Participation

• Do the assigned readings before class
• Show up to class
• No one will have the perfect background
 – Ask questions about computational or biological concepts
• Correct me when I am wrong
 – Seriously, it will happen
• Piazza discussion board
 – Questions and answers
Piazza Discussion Board

- Instead of a mailing list
- https://piazza.com/wisc/spring2022/bmics776
- Post your questions to Piazza instead of emailing the instructor or TA
 - Unless it is a private issue or project-related
- Answer your classmates’ questions
- Announcements will also be posted to Piazza
- Supplementary material for lecture topics
Course Readings

• Mostly articles from the primary literature
• Must be using a campus IP address to download some of the articles (can use WiscVPN from off campus)
Recommended textbook

Recommended online reading

• Translational Bioinformatics
 – https://collections.plos.org/translational-bioinformatics
Python references

• https://docs.python.org

• If you want a book:
 – Python 3 for programmers

• Many other good books and online resources

Prerequisites

• BMI/CS 576 or equivalent
• Knowledge of basic biology and methods from that course will be assumed
• May want to go over the material on the 576 website to refresh
• http://www.biostat.wisc.edu/bmi576/
What you should get out of this course

• An understanding of some of the major problems in computational biology and bioinformatics
• Familiarity with the techniques for addressing these problems
 – Computational, statistical, machine learning
• How to think about different data types
• At the end you should be able to
 – Read the bioinformatics literature
 – Apply the methods you have learned to other problems both within and outside of bioinformatics
 – Write a short bioinformatics research paper
Major Topics to be Covered (the algorithms perspective)

- Expectation Maximization
- Gibbs sampling
- Mutual information
- Network flow algorithms
- Multiple hypothesis testing correction
- Deep learning (e.g., Convolutional neural networks)
- Linear programming
- Clustering
- More machine learning approaches (e.g., manifold alignment)
Major Topics to be Covered (the task perspective)

• Modeling of motifs and *cis*-regulatory modules
• Identification of transcription factor binding sites
• Transcriptome quantification
• Transcriptome assembly
• Regulatory information in epigenomic data
• Genotype analysis and association studies
• Quantitative Trait Locus (QTL) Analysis
• Pathways in cellular networks
• Single cell RNA-seq
• Gene regulatory network
Motif Modeling

What sequence motif do these promoter regions have in common?
What configuration of sequence motifs do these promoter regions have in common?

cis-Regulatory Modules
Transcriptome Analysis with RNA-Seq

What genes are expressed and at what levels?
Transcriptome assembly
Noncoding Genetic Variants

How do genetic variants outside protein coding regions impact phenotypes?

Genotype to Phenotype

Genotyping
- Identification of genomic variants
- Variant analysis

Variant analysis
- Detection of significantly enriched variants in study population compared to control population

Genotype vs. Phenotype

Genotype = \textit{bb}
- Recessive = b

Genotype = Bb or BB
- Dominant = B

Phenotype = Blue Eyes
Phenotype = Brown Eyes
Genome-wide Association Studies

Which genes are involved in diabetes?

Type 2 diabetes association P values by chromosome (386,731 markers). The x-axis is the genomic position by chromosome 1-22 and X (by color), and the y-axis is the negative base 10 logarithm of the P value.
Quantitative Trait Locus (QTL) analysis
Identifying Signaling Pathways

How do proteins coordinate to transmit information?

Yeger-Lotem et al., Nature Genetics, 2009
Cell-type gene regulatory networks

- Cell-type-specific GRNs would be key tools for the study of cellular heterogeneity.

- Cell-type-specific GRNs will reveal key regulatory factors and circuits for specific cell types, facilitating mapping between disease-associated variants and affected cell types.

Machine Learning for Multiomics

Regularization $\Omega(\cdot)$

Prior knowledge
- Functional annotation
- Gene ontology
- Pathway
- Network
- Gene family

$\min_{f} \ell(f) + \Omega(f)$

Interpretability

Predictive model $f^*(\cdot)$

Machine learning algorithm

Xu. Genome Bio. 2019
Other Topics

• Many topics we aren’t covering
 – Protein structure prediction
 – Protein function annotation
 – Metagenomics
 – Metabolomics
 – Graph genomes
 – Mass Spectrometry
 – Text mining
 – Others?
Reading Groups

• Computational Systems Biology Reading Group
 – http://lists.discovery.wisc.edu/mailman/listinfo/compsysbiojc

• AI Reading Group
 – http://lists.cs.wisc.edu/mailman/listinfo/airg

• ComBEE Python Study Group
 – https://combee-uw-madison.github.io/studyGroup/

• Many relevant seminars on campus