Goals for lecture

Key concepts

• Importance of epigenetic data for understanding transcriptional regulation

• Use of epigenetic data for predicting transcription factor binding sites
Gene expression and regulation

Identical DNA but different gene expression

Central dogma

Gene expression levels (e.g., values to quantify RNA abundances)

Gene regulation: which & how genes express?
Identical DNAs but identical fates?

DNA methylation

Chromosomes

PNAS July 26, 2005 102 (30) 10604-10609; https://doi.org/10.1073/pnas.0500398102
Defining epigenetics

• Formally: attributes that are “in addition to” genetic sequence or sequence modifications
 – “Epigenetic code” (vs. genetic code)
• Informally: experiments that reveal the context of DNA sequence
 – DNA has multiple states and modifications

![DNA sequence diagram]

G A C T A G T G C G T T T A C T

vs.

G A C T A G T G C G T T T A C T

modification

inaccessible

Histones
Chromatin packages DNA around Histones
(pack six feet of DNA into a cell)

NGHRI genetics glossary

Importance of epigenetics

Better understand
• DNA binding and transcriptional regulation
• Differences between cell and tissue types
• Development and other important processes
PWMs are not enough

- Genome-wide motif scanning is imprecise
- Transcription factors (TFs) bind < 5% of their motif matches
- Same motif matches in all cells and conditions
PWMs are not enough

• DNA looping can bring distant binding sites close to transcription start sites
• Which genes does an enhancer regulate?

Enhancer: DNA binding site for TFs, can be far from affected gene

Promoter: DNA binding site for TFs, close to gene transcription start site
Mapping regulatory elements genome-wide

- Can do much better than motif scanning with additional data
- ChIP-seq measures binding sites for one TF at a time
- Epigenetic data suggests where some TF binds

Shlyueva Nature Reviews Genetics 2014
DNase I hypersensitivity

- Regulatory proteins bind accessible DNA
- DNase I enzyme cuts open chromatin regions that are not protected by nucleosomes

Nucleosome: DNA wrapped around histone proteins

Wang *PLoS ONE* 2012
Histone modifications

- Mark particular regulatory configurations

 Chromatin as accessibility barrier

 Closed

 Open or accessible

 Active enhancer

 Enhancer

 Active promoter

 Core promoter

 DNA-binding proteins: TFs, CTCF, repressors and polymerases

 H3K4me1

 H3K4me3

 H3K27ac

 H3K27me3

 Me, methylation;

 Ac, acetylation;

 Cit, citrullination;

- H3 (protein) K27 (amino acid) ac (modification)

 Latham *Nature Structural & Molecular Biology* 2007; Katie Ris-Vicari

 Shlyueva *Nature Reviews Genetics* 2014

 Two copies of histone proteins H2A, H2B, H3, H4
DNA methylation

- Reversible DNA modification
- Represses gene expression

Gene “switched on”
- Active (open) chromatin
- Unmethylated cytosines (white circles)
- Acetylated histones

Gene “switched off”
- Silent (condensed) chromatin
- Methylated cytosines (red circles)
- Deacetylated histones
3D organization of chromatin

- YouTube: The 3D Organization of Our Genome
- Algorithms to predict long range enhancer-promoter interactions
- Or measure with chromosome conformation capture (3C, Hi-C, etc.)
Hi-C produces 2D chromatin contact maps

- Learn domains, enhancer-promoter interactions

Rao Cell 2014
Next Generation Sequencing (NGS) for epigenomics

Based on an image by Darryl Leja (NHGRI), Ian Dunham (EBI), Michael Pazin (NHGRI)
Large-scale epigenetic maps

• Epigenomes are condition-specific
• Roadmap Epigenomics Consortium and ENCODE surveyed over 100 types of cells and tissues
Genome annotation

- Combinations of epigenetic signals can predict functional state
 - ChromHMM: Hidden Markov Model
 - Segway: Dynamic Bayesian network
Genome annotation

- States are more interpretable than raw data

Ernst and Kellis *Nature Methods* 2012
Predicting TF binding with DNase-Seq
DNase I hypersensitive sites

- Arrows indicate DNase I cleavage sites
- Obtain short reads that we map to the genome

Wang PLoS ONE 2012
DNase I footprints

- Distribution of mapped reads is informative of open chromatin and specific TF binding sites

Read depth at each position

Nucleosome free “open” chromatin

Zoom in

TF binding prevents DNase cleavage leaving Dnase I “footprint”, only consider 5’ end

Neph Nature 2012
DNase I footprints to TF binding predictions

• DNase footprints suggest that *some* TF binds that location

• We want to know *which* TF binds that location

• Two ideas:
 – Search for DNase footprint patterns, then match TF motifs
 – Search for motif matches in genome, then model proximal DNase-Seq reads

We’ll consider this approach