Interpreting noncoding variants

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2019
Colin Dewey
colin.dewey@wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Anthony Gitter, Mark Craven, and Colin Dewey
Goals for lecture

Key concepts

• Mechanisms disrupted by noncoding variants
• Deep learning to predict epigenetic impact of noncoding variants
GWAS output

• GWAS provides list of SNPs associated with phenotype

• SNP in coding region
 – Link between the protein and the disease?

• SNP in noncoding region
 – What genes are affected?
Noncoding variants common in GWAS

- Meta-analysis of GWAS for 21 autoimmune diseases
 - Rheumatoid arthritis, lupus, multiple sclerosis, etc.
- Method to prioritize candidate causal SNPS
- **90%** of causal variants are noncoding

Farh *Nature* 2015
Almost all single nucleotide variants in cancer are noncoding

However, very few of these are driver mutations

Khurana Nature Reviews Genetics 2016
Ways a noncoding variant can be functional

- Disrupt DNA sequence motifs
 - Promoters, enhancers
- Disrupt miRNA binding
- Mutations in introns affect splicing
- Indirect effects from the above changes

Examples in Ward and Kellis *Nature Biotechnology* 2012
Variants altering motifs

Khurana Nature Reviews Genetics 2016
Variants affect proximal and distal regulators

Khurana Nature Reviews Genetics 2016
Evidence used to prioritize noncoding variants

Interpreting GWAS signals using functional and comparative genomics datasets

Dissect associated haplotype using functional genomics

Dissect associated haplotype using regulatory genomics

Dissect associated haplotype using comparative genomics

Log odds score vs. Genomic position

Enhancer motif enrichment analysis

Motif library: A B C D E F

Chromatin state annotations

Motifs altered by variants

Mammalian constraint

Ward and Kellis Nature Biotechnology 2012
Visualizing evidence

Data supporting chr11:5246957 (rs33914668)

Score: 2a

Likely to affect binding

Summary of evidence

Genes

Epigenetic annotations

Conservation

Affected motifs

Boyle Genome Research 2012
Combined Annotation–Dependent Depletion (CADD)

• Example of an algorithm that integrates multiple types of evidence into a single score
 – Conservation
 – Epigenetic information
 – Protein function scores for coding variants

• Train support vector machine on simulated and observed variants

• Variants present in simulation but not observed are likely deleterious

Kircher *Nature Genetics* 2014
Prioritizing variants with epigenetics summary

+ Disrupted regulatory elements one of the best understood effects of noncoding SNPs
+ Make use of extensive epigenetic datasets
+ Similar strategies have actually worked
 • rs1421085 in FTO region and obesity
 • Claussnitzer New England Journal of Medicine 2015

- Epigenetic data at a genomic position is often in the presence of the reference allele
 • Don’t have measurements for the SNP allele
DeepSEA

• Given:
 – A sequence variant and surrounding sequence context

• Do:
 – Predict TF binding, DNase hypersensitivity, and histone modifications in multiple cell and tissue types
 – Predict variant functionality

Zhou and Troyanskaya *Nature Methods* 2015
Classifier input and output

- **Output**
 - 200 bp windows of genome
 - Label 1 if window contains peak
 - Label for each epigenetic data type
 - Multiple types of epigenetic features
 - Multiple types of cells and tissues

- **Input:** 1000 bp DNA sequence centered at window

\[
\begin{array}{ccccccccc}
\text{index} & 1 & \ldots & 401 & 402 & 403 & \ldots & 1000 \\
A & 0 & 1 & 0 & 0 & 0 & \ldots & 0 \\
C & 0 & 0 & 0 & 0 & 0 & \ldots & 1 \\
G & 0 & 0 & 1 & 1 & 0 & \ldots & 0 \\
T & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
\end{array}
\]

\[
\chi_i =
\]
Desired properties for epigenomic classifier

• Learn preferences of DNA-binding proteins
 – Locally: “motifs” and other simple sequence patterns
 – Sequence context: “cis-regulatory modules”

• Support nonlinear decision boundaries

• Multiple, related prediction tasks
Perceptron

- Inspired by neuron

- Simple binary classifier
 - Linear decision boundary

\[o = \begin{cases}
1 & \text{if } w_0 + \sum_{i=1}^{n} w_i x_i > 0 \\
0 & \text{otherwise}
\end{cases} \]

\[x_1, x_2, \ldots, x_{1000}, T \]
Activation function

• What makes the neuron “fire”?
 – Step function
 \[
 f(x) = \begin{cases}
 0 & \text{if } x < 0 \\
 1 & \text{if } x \geq 0
 \end{cases}
 \]

 – Sigmoid function
 \[
 f(x) = \frac{1}{1 + e^{-x}}
 \]

 – Rectified linear unit (ReLU)
 \[
 f(x) = \max(0, x)
 \]

Images from Wikipedia: Activation function
Neural networks

• Single perceptron not useful in practice

• Neural network combines layers of perceptrons

• Learn “hidden” features

• Complex decision boundary

• Tune weights to reduce error

• Train with backpropagation
 – Stanford’s CS231n materials
 – Andrej Karpathy’s gentle introduction
 – CS 760 slides
Neural network examples

• Simple linear decision boundary
• Linear decision boundary fails for XOR
• XOR with one hidden layer
• Complex, non-linear patterns

• Try varying weights, hidden units, and layers
 – What patterns can you learn with 0 hidden layers?
 – 1 hidden layer?
 – More?
First hidden layer

- First hidden layer scans input sequence
- Activation function fires if “motif” is recognized

Motif width (window size)
\(s = 6 \)

Sequence length \(L \)
First hidden layer example

- **Forward pass at the first hidden layer, input 1**

Hidden node to recognize motif 1 in position 1 of the input sequence.

```
A 1 0 0 0 1 0 0 0 0 0
C 0 0 0 1 0 0 0 0 1 0
G 0 1 1 0 0 1 0 1 0 1
T 0 0 0 0 0 0 1 0 0 0
```

For simplicity, \(s = 2 \)

```
A G G C A G T G C G
```

Input sequence 1

```
1 0 0 0 1 0 0 0
```

Bias

Current weight vector for \(h_{1,1} \):

```
w = \begin{bmatrix}
w_0 \\
w_1 \\
w_2 \\
w_3 \\
w_4 \\
w_5 \\
w_6 \\
w_7 \\
w_8 \\
\end{bmatrix} = \begin{bmatrix}
-1.5 \\
2 \\
0.1 \\
0.4 \\
0.2 \\
-1.7 \\
3 \\
-0.5 \\
0.3 \\
\end{bmatrix}
```

Weights times input:

\[
w \cdot x^1 = -1.5 + 2 + 3 = 3.5
\]

Apply ReLU activation function:

\[
\max(0, 3.5) = 3.5
\]
First hidden layer example

• Forward pass at the first hidden layer, input 2

Hidden node to recognize motif 1 in position 1 of the input sequence

Input sequence 2

A 0 0 0 1 0 1 1 0 0 0
C 0 0 0 0 1 0 0 1 0 0
G 1 1 1 0 0 0 0 0 0 1
T 0 0 0 0 0 0 0 0 1 0

$\mathbf{x}^2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \end{bmatrix}$ Bias

Current weight vector for $h_{1,1}$

$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \\ w_7 \\ w_8 \end{bmatrix} = \begin{bmatrix} -1.5 \\ 2 \\ 0.1 \\ 0.4 \\ 0.2 \\ -1.7 \\ 3 \\ -0.5 \\ 0.3 \end{bmatrix}$

Weights times input

$\mathbf{w} \cdot \mathbf{x}^2 = -1.5 - 1.7 + 3 = -0.2$

Apply ReLU activation function

$max(0, -0.2) = 0$
First hidden layer

- Multiple hidden nodes to recognize different motifs at a particular position

- Check for motif at each position in sequence

A hidden node with its own weight vector

\[W = L - s + 1 \text{ starting positions} \]
First hidden layer example

- Next filter applied to **input 1**

Hidden node to recognize motif 2 in position 1 of the input sequence

\[
x^1 = 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0
\]

Bias

Current weight vector for \(h_{2,1} \)

\[
w = \begin{bmatrix}
w_0 \\
w_1 \\
w_2 \\
w_3 \\
w_4 \\
w_5 \\
w_6 \\
w_7 \\
w_8
\end{bmatrix} = \begin{bmatrix}
0.5 \\
0.4 \\
2.6 \\
0.1 \\
0.3 \\
-0.6 \\
0.3 \\
5 \\
3
\end{bmatrix}
\]

Weights times input

\[
w \cdot x^1 = 0.5 + 0.4 + 0.3 = 1.2
\]

Apply ReLU activation function

\[
\max(0, 1.2) = 1.2
\]
First layer problems

• We already have a lot of parameters
 – Each hidden node has its own weight vector

• We’re attempting to learn different motifs (filters) at each starting position
Convolutional layers

- Input sequence and hidden layer as matrices
- Share parameters for all hidden nodes in a row
 - Search for same motif at different starting positions
Pooling layers

- Account for sequence context

- Multiple motif matches in a cis-regulatory module

- Search for patterns at a higher spatial scale
 - Fire if motif detected anywhere within a window
Pooling layers

• Take max over window of 4 hidden nodes
Subsequent hidden layers

- Next convolutional hidden layer on top of pooling layer

\(D' \) is new number of patterns

\(s' \) is new window size

\(W' = (W/4) - s' + 1 \)

Once again, shared weight vector for all nodes in a row
Full DeepSEA neural network

- Multitask output makes simultaneous prediction for each type of epigenetic data
- ReLU activations
Predicting epigenetic annotations

• Compute median AUROC for three types of classes

- Transcription factors: 0.958
- DNase I-hypersensitive sites: 0.923
- Histone marks: 0.856

Zhou and Troyanskaya *Nature Methods* 2015
Predicting functional variants

- Can predict epigenetic signal for any novel variant (SNP, insertion, deletion)

- Define novel features to classify variant functionality
 - Difference in probability of signal for reference and alternative allele

- Train on SNPs annotated as regulatory variants in GWAS and eQTL databases
Predicting functional variants

Boosted logistic regression

Conservation and predicted epigenetic impact of variant as features

Zhou and Troyanskaya *Nature Methods* 2015
DeepSEA summary

• Ability to predict how unseen variants affect regulatory elements
• Accounts for sequence context of motif
• Parameter sharing with convolutional layers
• Multitask learning to improve hidden layer representations

• Does not extend to new types of cells and tissues
• AUROC is misleading for evaluating genome-wide epigenetic predictions
Predicting new TF-cell type pairs

- DeepSEA cannot predict pairs not present in training data
 - Can predict TF A in cell type 1
 - Not TF A in cell type 4

- New methods can
 - TFImpute
 - FactorNet
 - Virtual ChIP-seq

<table>
<thead>
<tr>
<th>TF</th>
<th>Cell type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
</tbody>
</table>
Deep learning is rampant in biology and medicine

- Network interpretation: DeepLIFT
- Protein structure prediction
- Cell lineage prediction
- Variant calling

- Model zoo: Kipoi

- Comprehensive review: deep-review