Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2019
Colin Dewey
cdewey@biostat.wisc.edu
Overview

• Part I - Alternative splicing and the challenges it poses

• Part II - A solution: *Probabilistic Splice Graphs (PSGs)*

• Part III - Evaluating PSG methodology
Alternative splicing

pre-mRNA

splicing

alternatively spliced mRNAs

translation

protein isoforms
Classes of alternative splicing events

- Exon skipping
- Mutually exclusive exons
- Alternative 5' donor sites
- Alternative 3' acceptor sites
- Intron retention
Complication 1: De novo transcriptome assembly

- RNA-Seq reads/fragments are relatively short
- Often insufficient to reconstruct full-length isoforms in the presence of alternative splicing
- Transcriptome assemblies perhaps best left in “graph” form
 - De Bruijn graph
Complication 2: Non-identifiability of full-length isoform models

Lacroix et al. 2008; Hiller et al. 2009
Complication 3: Combinatorial explosion of distinct isoforms

- Combinatorial explosion of the number of possible isoforms for each gene

- Insufficient data to accurately estimate abundances of thousands of isoforms

Drosophila Dscam: more than 38,000 possible isoforms (Schmucker et al., 2000)
Overview

• Part I - Alternative splicing and the challenges it poses

• Part II - A solution: *Probabilistic Splice Graphs (PSGs)*

• Part III - Evaluating PSG methodology
Splice Graphs

• Heber et al. 2002

• Compact **data structure** for representing the possible isoforms of a gene
Splice Graphs with EST and RNA-Seq data

• Xing et al. 2006
 • EM algorithm for estimating abundances of all possible isoforms given splice graph and EST data

• Montgomery et al. 2010, Singh et al. 2011
 • Graph flow-based methods for quantification/differential splicing given RNA-Seq data

• Rogers et al. 2012
 • SpliceGrapher: construct splice graph structure given RNA-Seq data
Probabilistic Splice Graphs

- Jenkins et al. 2006

- Compact **probabilistic model** representing isoform frequencies in terms of frequencies of individual splice events

- Originally used by Jenkins et al. for EST analysis
Probabilistic Splice Graph Complexity

<table>
<thead>
<tr>
<th>130869000</th>
<th>130868500</th>
<th>130868000</th>
<th>130867500</th>
<th>130867000</th>
<th>130866500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gfra4</td>
<td>Gfra4</td>
<td>Gfra4</td>
<td>Gfra4</td>
<td>Gfra4</td>
<td>Gfra4</td>
</tr>
<tr>
<td>chr2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **known isoforms**
 - “line graph”
 - “exon graph”
 - “higher-order exon graph”
 - “unfactorized graph”
Advantages of PSGs

• **Compact** description of the possible isoforms of a gene

• Models the frequencies of potentially exponentially many isoforms with a **polynomial** number of parameters

• Models **dependence or independence** of splice events

• The parameters of a PSG are more often **identifiable** than a model that has a parameter for every possible isoform

• Splice graphs are **naturally-produced structures** from transcriptome assemblers
PSGs are alternative “parsimonious” models

- Other methods find the smallest set of isoform structures that explain the data
 - Cufflinks (Trapnell et al., 2010)
 - IsoLasso (Li et al., 2011)
 - NSMAP (Xia et al., 2011)
 - SLIDE (Li et al., 2011)
- PSG models are another form of parsimonious model
 - Minimize the number of splice event parameters
 - Assumption of independence between splice events
Our contributions

• Application of PSGs to RNA-Seq data

• Combined model of PSG with RNA-Seq generative model

• Efficient PSG parameter estimation with EM and dynamic programming

• Identifiability proofs for PSG with RNA-Seq data

• Differential processing (splicing) tests

The PSG parameter inference task

• Given: RNA-Seq reads and a PSG structure

CCTTCNCACTTCGTTTCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACAANTCCAACGCTTTGGTGA
GGAAANAAGACCCCTTGGGAGC
CCCCGNATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCCTACCGGATCG
CATCTAGCATTGCCTGGGTTT

• Do: Estimate the (ML or MAP) parameters for the model
A model of RNA-Seq from PSGs

- RSEM model extended to probabilistic splice graphs
- Fragment length distribution, quality scores, read mapping ambiguity
- Dynamic programming algorithms → polynomial time inference for genes with an exponential number of isoforms

Probability of including vertex \(j \) given that vertex \(i \) was in transcript

\[
f(i, j) = \sum_{s: s_1 = i, s_{|s|} = j} w(s) = \begin{cases}
1 & i = j \\
\sum_k \alpha_{k,j} f(i, k) & i \neq j
\end{cases}
\]

Expected prefix length

\[
d_p(i) = \ell_i + \frac{1}{f(0, i)} \sum_j f(0, j) \alpha_{j,i} d_p(j)
\]

Expected suffix length

\[
d_q(i) = \ell_i + \sum_j \alpha_{i,j} d_q(j)
\]
EM for PSG parameter estimation

- E-step: compute the expectation of the number of times edge \((i,j)\) is used

\[
E[Z_{nij}] = \frac{\sum_{(b,s) \in \pi(r)} g(s, i, j)}{\sum_{(b,s) \in \pi(r)} g(s)}
\]

\[
g(s) = f(0, s_1)w(s)
\]

\[
g(s, i, j) = \begin{cases}
 f(0, s_1)w(s) & (i, j) \in s \\
 f(0, i)\alpha_{ij}f(j, s_1)w(s) & \text{if } \exists \text{ path from } v_j \text{ to } s_1 \\
 f(0, s_1)w(s)f(s_{|s|}, i)\alpha_{ij} & \text{if } \exists \text{ path from } s_{|s|} \text{ to } v_i \\
 0 & \text{otherwise}
\end{cases}
\]

- M-step: maximize the completely-observed likelihood given the edge counts

\[
\alpha_{ij} = \frac{z_{ij}}{\sum_{k} \frac{z_{ik}}{(d_p(i)+d_q(k))}}
\]
Identifiability of PSGs with RNA-Seq data

- **Identifiability:** \(P(D|M, \theta) = P(D|M, \theta'), \forall D \iff \theta = \theta' \)

- **Proposition:** If for all edges \((u, v)\), there exists a read that is uniquely derived from that edge, or \(v\) has indegree 1 and there exists a read that is uniquely derived from \(v\), then the PSG is identifiable.

![Diagram showing identifiability of PSGs with RNA-Seq data](image)
The differential processing (DP) task

• Given: RNA-Seq reads from two conditions and a PSG structure

condition 1
CCTTCNCACTTCTGTTTCCAC
TTTTNNCAAGGTGTTTCTTG
GAACANTCCACGCTTTGGTGA
GGAANAAGACCCCTGTGAGGCG
CCCNGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCTACCGGATCG
CATCTAGCATCGCTGGTGCNT

condition 2
CATATCGTCGTAAGCTAGTAGCCG
CCACACTAGGCTACGATGCGCA
TCGACGCTACGCTACGCCGAC
ACTAGTACGCTACGATGCT
GGATGCTCAGATGCTATCGG
CGATTTACGGAAGCTCATCGA
AAACATCGGAAGGCGTTTAA
CAGCTAGCCGCTAGGCGTTT
CATGCTAGCGCGATCGCTAGT
GCATCGACTCGCGACTCGATGC
ACGCATCGACTCGGACTCG

• Do: Determine if the processing frequencies are different

\[\alpha_1 = \alpha'_1 \text{ and } \alpha_2 = \alpha'_2 \text{ ?} \quad \alpha_1 = \alpha'_1 \text{ or } \alpha_2 = \alpha'_2 \text{ ?} \]
Our approach to the differential processing (DP) task

- Simple likelihood ratio tests with PSG model

- Test for null hypothesis that all frequencies are the same

\[\text{LR} = \frac{P(R^1|\hat{\alpha}^1)P(R^2|\hat{\alpha}^2)}{P(R^1 \cup R^2|\hat{\alpha}^{12})} \]

- Test for null hypothesis that frequencies of edges out of one vertex \((i)\) are the same

\[\text{LR} = \frac{P(R^1|\hat{\alpha}^1)P(R^2|\hat{\alpha}^2)}{P(R^1, R^2|\hat{\alpha}_{<i}^1, \hat{\alpha}_{<i}^2, \hat{\alpha}_{i}^{12})} \]
Overview

• Part I - The problem

• Part II - A solution: *Probabilistic Splice Graphs (PSGs)*

• Part III - Evaluating PSG methodology
Efficient inference for highly-spliced genes

• DSCAM running time test
 • 23,976 isoforms
 • 184 read pairs from a modENCODE sample

<table>
<thead>
<tr>
<th>Method</th>
<th>RSEM</th>
<th>Cufflinks</th>
<th>PSG EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running time</td>
<td>Not possible</td>
<td>> 6 hours (> 90 GB RAM)</td>
<td>< 3 seconds</td>
</tr>
</tbody>
</table>
A simple method for comparison

• The **Junction-Read** (JR) method

• Keep only reads that align to the splice junctions (edges in the PSG)

• Throws away data, but is very robust to model assumption violations
Convergence with simulated data

Graph showing the relationship between the size of the read set and the edge probability. The graph is split into four sections, each representing different exon lengths: 20-bp Exon, 40-bp Exon, 60-bp Exon, and 80-bp Exon. Each section contains a bar chart that displays the edge probability for different sizes of read sets, ranging from 10 to 10k. The graph also includes markers for EM and JR, indicating the performance of two different methods. The x-axis represents the size of the read set, while the y-axis represents the edge probability (\(\alpha \)).
Comparisons on real data

• Require notion of “distance” between estimates from different methods

• Our distance measure:

 • per vertex

 • maximum difference between probability estimates on out-edges of vertex (L-∞ norm)

\[
distance_v(A, B) = \max(|0.6 - 0.2|, |0.5 - 0.3|, |0.3 - 0.1|) = 0.4
\]
How close are the estimates from JR and EM on real data?

Vertices from 88 most abundant (> 5000 reads) alternatively-spliced genes in a modENCODE fly data set
Convergence of estimates on real data

![Graph showing mean convergence of estimates on real data with different read set sizes for Single EM, Single JR, Paired EM, and Paired JR.](image-url)
Comparing PSGs of different complexity

• Same set of fly data

• Estimated with three classes of PSG: line, exon, full-length

• Compared estimates to those from JR (gold-standard)

• No statistically-significant difference between exon and full-length graph estimates
Summary of Junction-Read comparison results

- Estimates using PSG models are generally close to those from the simplistic JR-method
 - ➔ PSG model assumptions appear to be reasonable

- PSG estimates converge more quickly as the data set increases in size
 - ➔ Our EM estimation procedure uses information from all reads, not just those that span splice junctions

- Exon-graph estimates as good as those using traditional full-length isoform models
 - ➔ Independence assumptions of exon graphs appear to be reasonable

Differential processing detection

DP Accuracy on real data

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>Sample 2</th>
<th># of DP genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEU Rep 1</td>
<td>CEU Rep 2</td>
<td>1187</td>
</tr>
<tr>
<td>CEU Rep 1</td>
<td>Yoruban Rep 1</td>
<td>269</td>
</tr>
<tr>
<td>CEU Rep 1</td>
<td>Yoruban Rep 2</td>
<td>282</td>
</tr>
<tr>
<td>CEU Rep 2</td>
<td>Yoruban Rep 1</td>
<td>253</td>
</tr>
<tr>
<td>CEU Rep 2</td>
<td>Yoruban Rep 2</td>
<td>260</td>
</tr>
<tr>
<td>Yoruban Rep 1</td>
<td>Yoruban Rep 2</td>
<td>1253</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 1</td>
<td>CME_W1_Cl.8+ Rep 2</td>
<td>204</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 1</td>
<td>Kc167</td>
<td>7</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 1</td>
<td>ML-DmBG3-c2</td>
<td>6</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 1</td>
<td>S2-DRSC</td>
<td>12</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 2</td>
<td>Kc167</td>
<td>16</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 2</td>
<td>ML-DmBG3-c2</td>
<td>16</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 2</td>
<td>S2-DRSC</td>
<td>17</td>
</tr>
<tr>
<td>Kc167</td>
<td>ML-DmBG3-c2</td>
<td>12</td>
</tr>
<tr>
<td>Kc167</td>
<td>S2-DRSC</td>
<td>12</td>
</tr>
<tr>
<td>ML-DmBG3-c2</td>
<td>S2-DRSC</td>
<td>4</td>
</tr>
<tr>
<td>HUVEC Rep 1</td>
<td>HUVEC Rep 2</td>
<td>440</td>
</tr>
<tr>
<td>HUVEC Rep 1</td>
<td>K562 Rep 1</td>
<td>8</td>
</tr>
<tr>
<td>HUVEC Rep 1</td>
<td>K562 Rep 2</td>
<td>12</td>
</tr>
<tr>
<td>HUVEC Rep 2</td>
<td>K562 Rep 1</td>
<td>8</td>
</tr>
<tr>
<td>HUVEC Rep 2</td>
<td>K562 Rep 2</td>
<td>10</td>
</tr>
<tr>
<td>K562 Rep 1</td>
<td>K562 Rep 2</td>
<td>168</td>
</tr>
</tbody>
</table>
Differential processing detection

DP accuracy on simulated data

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Predicted DP</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSG</td>
<td>A Rep 1</td>
<td>A Rep 2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 1</td>
<td>257</td>
<td>0.60</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 2</td>
<td>230</td>
<td>0.54</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 1</td>
<td>251</td>
<td>0.59</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 2</td>
<td>235</td>
<td>0.54</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>B Rep 1</td>
<td>B Rep 2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuffdiff</td>
<td>A Rep 1</td>
<td>A Rep 2</td>
<td>379</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 1</td>
<td>49</td>
<td>0.11</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 2</td>
<td>58</td>
<td>0.13</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 1</td>
<td>48</td>
<td>0.12</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 2</td>
<td>51</td>
<td>0.11</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>B Rep 1</td>
<td>B Rep 2</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDM</td>
<td>A Rep 1</td>
<td>A Rep 2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 1</td>
<td>311</td>
<td>0.39</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 2</td>
<td>255</td>
<td>0.28</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 1</td>
<td>320</td>
<td>0.37</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 2</td>
<td>242</td>
<td>0.24</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>B Rep 1</td>
<td>B Rep 2</td>
<td>148</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulations based on two ENCODE cell lines, 10% of genes selected to be DP
Next steps for modeling RNA-Seq with PSGs

- Graph construction
- Exon discovery
- Splice junction discovery
- Model selection
- Learning dependencies between splice events
Summary

• **Alternative splicing** is a significant complication in RNA-Seq analysis

• **Probabilistic Splice Graphs** enable identifiable models for alternatively spliced genes with efficient inference algorithms

• **Differential processing** (splicing) tests with PSG models look promising