Goals for Lecture

the key concepts to understand are the following
• the pattern matching task
• the suffix tree representation
• using a suffix tree to find matching strings
• the naïve $O(m^2)$ approach to building a suffix tree
• Ukkonen’s $O(m)$ approach to building a suffix tree
Alignment vs. Pattern Matching

• global sequence alignment
 – input: $n \geq 2$ relatively short sequences
 – homology assumptions: homologous along entire length, colinear
 – goal: determine homologous positions

• pattern matching
 – input: $n \geq 1$ sequences (short or long)
 – homology assumptions: none
 – goal: find short exact/inexact substring (local) matches between or within input sequences

Suffix Trees

• substring problem:
 – given text S of length m
 – preprocess S in $O(m)$ time
 – such that, given query string Q of length n, find occurrence (if any) of Q in S in $O(n)$ time

• suffix trees solve this problem, and others
Suffix Tree Definition

- a suffix tree T for a string S of length m is tree with the following properties:
 - rooted and directed
 - m leaves, labeled 1 to m
 - each edge labeled by a substring of S
 - concatenation of edge labels on path from root to leaf i is suffix i of S (we will denote this by $S_{i...m}$)
 - each internal non-root node has at least two children
 - edges out of a node must begin with different characters

Suffixes

$S = \text{“banana$”}$

suffixes of S

- $\$
- a$
- na$
- ana$
- nana$
- anana$
- banana$
- banana$
Suffix Tree Example

- \(S = \text{“banana$”} \)
- add ‘$’ to end so that suffix tree exists (no suffix is a prefix of another suffix)

Solving the Substring Problem

- assume we have suffix tree \(T \)
- \textbf{FindMatch}(Q, T):
 - follow (unique) path down from root of \(T \) according to characters in \(Q \)
 - if all of \(Q \) is found to be a prefix of such a path return label of some leaf below this path
 - else, return no match found
Solving the Substring Problem

\[Q = \text{nan} \]

return 3

\[Q = \text{anab} \]

return no match found

Runtime of Substring Problem with Suffix Tree

- finite alphabet: \(O(1) \) work at each node
- edges out of each node start with unique characters: unique path from root
- size of tree below end of path: \(O(k) \), \(k \) = number of suffixes starting with \(Q \)
- \(O(n + k) \) time to report all \(k \) matching substrings
- \(O(n) \) to report just one with an additional trick
Suffix Tree Example

- $S = \text{“banana$”}
- add ‘$’ to end so that suffix tree exists (no suffix is a prefix of another suffix)

```
  o---o
  |    |
  a    a
  |    |
  n    n
  |    |
  a    a
  |    |
  n    n
  |    |
  a    a
  |    |
  n    n

2 4 6 1 3 5 7
```

Naive Suffix Tree Building

- now we need a $O(m)$ time algorithm for building suffix trees
- naive algorithm is $O(m^2)$:
 - $T \leftarrow \text{empty tree}$
 - for i from 1 to m:
 - add suffix $S_{i..m}$ to T by finding longest matching prefix of $S_{i..m}$ in T and branching from there
 - each step is $O(m)$
O(m²) Suffix Tree Building

Ukkonen’s O(m) Algorithm

- on-line algorithm
 - builds *implicit* suffix tree for each prefix of string S
 - implicit suffix tree of $S_{1...i}$ denoted I_i
 - builds I_i, then I_2 from I_1, ..., then I_m from I_{m-1}
- basic algorithm is $O(m^3)$, but with a series of tricks, it is $O(m)$
Implicit Suffix Tree

- Suffix tree → implicit suffix tree
 - remove $ characters from labels
 - remove edges with empty labels
 - remove internal nodes with < 2 children

Ukkonen’s Algorithm Overview

construct I_1
for i from 1 to $m - 1$ // phase i
 for j from 1 to $i + 1$
 • find end of path from root labeled $S_{j...i}$
 • add character S_{i+1} to the end of this path in the tree, if necessary
Suffix Extension Rule 1.

1. if path $S_{j...i}$ in tree ends at leaf, add character S_{i+1} to end of label of edge into leaf

\[S_{j...i} = \ldots an \quad S_{j...i+1} = \ldots ana \]

Suffix Extension Rule 2.

2. if there are paths continuing from path $S_{j...i}$ in the tree, but none starting with S_{i+1}, then create a new leaf edge with label S_{i+1} at the end of path $S_{j...i}$ (creating a new internal node if $S_{j...i}$ ends in the middle of an edge)

\[S_{j...i} = \ldots na \quad S_{j...i+1} = \ldots nay \]
Suffix Extension Rule 3.

3. if there are paths continuing from path $S_{j...i}$ in the tree, and one starts with S_{i+1}, then do nothing

\[S_{j...i} = ...na \quad S_{j...i+1} = ...nan \]

Conversion to Suffix Tree

- convert implicit suffix tree at end of algorithm into true suffix tree
- simply run algorithm for one more iteration with $\$\$ final character
- traverse tree to label leaf edges with positions
Example

Example (Continued)
Key Idea 1: Leaves ⇒ Free Operations

- *once a leaf always a leaf*: when a leaf edge is created on phase p, label the edge with (p, e)

- e is a global index that is updated in constant time on each phase

Key Idea 2: Existing Strings ⇒ Free Operations

- if suffix extension rule 3 applies to extension j, it will apply in all further extensions in phase; therefore end phase early

3. if there are paths continuing from path $S_{j...i}$ in the tree, and one starts with S_{i+1}, then do nothing

$$S_{j...i} = ...na \quad S_{j...i+1} = ...nan$$
Ukkonen’s Algorithm with Implicit Free Operations

construct I_1
for i from 1 to $m - 1$:
 for $j_L < j < j_R$:
 find end of path from root labeled $S_j...i$
 add character S_{i+1} to the end of this path

• j_L in iteration i is the last leaf inserted in iteration $i-1$
• j_R in iteration i is the first index where $S_{j...i+1}$ is already in the tree

Explicit Operations

• for $j_L < j < j_R$, j is made a leaf
• once a leaf, always a leaf

Figure from Aarhus Universitet course on String Algorithms
Example Revisited

<table>
<thead>
<tr>
<th>phase ((i))</th>
<th>(j)</th>
<th>extension</th>
<th>rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>banana$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>anana$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>nana$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ana$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>na$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>a$</td>
<td>2</td>
</tr>
</tbody>
</table>

Ukkonen’s Algorithm

- **construct** \(L_i\)
 - for \(i\) from 1 to \(m - 1\)
 - for \(j_L < j < j_R\)
 - find end of path from root labeled \(S_{j,...,i}\)
 - add character \(S_{i+1}\) to the end of this path

can be done in constant time
Key Idea 3: Suffix Links

- how to find end of each suffix $S_{j...i}$?
- instead of searching down tree in $O(i-j+1)$ time, use suffix links and some tricks

- a suffix link is a pointer from an internal node v to another node $s(v)$ where
 - x is a character, α is a substring (possibly empty)
 - v has path-label $x\alpha$
 - $s(v)$ has path-label α

![Diagram of suffix tree with suffix links]

Edge-Label Compression

- to get run time down to $O(m)$ have to ensure that space is $O(m)$
- label edges with pair of indices into string rather than with explicit substring
- makes space requirement only $O(m)$

$S = \text{“banana$”}$

![Diagram of labeled suffix tree]
Final Runtime

- putting all of these tricks and implementation details together, Ukkonen’s algorithm runs in time $O(m)$
- more details found in (Ukkonen, 1995) or book by Dan Gusfield (Gusfield, 1997)