Inferring genetic variation and discovering associations with phenotypes

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2017
Anthony Gitter
gitter@biostat.wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Mark Craven, Colin Dewey, and Anthony Gitter
Outline

• Variation detection
 – Array technologies
 – Whole-genome sequencing

• Genome-wide association study (GWAS) basics
 – Testing SNPs for association
 – Correcting for multiple-testing
Variation detecting technologies

• **Array-based technologies**
 – Relies on hybridization of sample DNA to pre-specified probes
 – Each probe is chosen to measure a single possible variant: SNP, CNV, etc.

• **Sequencing-based technologies**
 – Whole-genome shotgun sequence, usually at low coverage (e.g., 4-8x)
 – Align reads to reference genome: mismatches, indels, etc. indicate variations
Array-based technologies

• Currently two major players
• Affymetrix Genome-Wide Human SNP Arrays
 – Used for HapMap project, Navigenics service
• Illumina BeadChips
 – Used by 23andMe, deCODEme services
Affymetrix SNP arrays

• Probes for ~900K SNPs
• Another ~900K probes for CNV analysis
• Differential hybridization – one probe for each possible SNP allele

Fluorescent tag on sample DNA
sample DNA

Probes for one SNP at a known locus
Illumina BeadChips

- **OmniExpress+**
 - ~900K SNPs (700K fixed, 200 custom)
- Array with probes immediately adjacent to variant location
- Single base extension (like sequencing) to determine base at variant location
Sequencing-based genotyping

compute $\arg\max \ P(\text{genotype} \mid \text{reads}, \text{reference})$ for each genomic position

reads

reference

$\text{ACTCTACGTTACGATCGTGCAC}$

$\text{GATCGTCGCTACGTGCTAG}$
$\text{CTCTACGTTACGATCGTGC}$
$\text{CGATCATTACGCTACGTGCTA}$
$\text{TACGATCGTCTCTACGTGC}$
$\text{CTACGTAAGATCATCGCTA}$
$\text{ACGATCATCGCTACGTGCT}$
$\text{CGTACGATCGTCGCTACGT}$

sequencing error?

genotype = GA?
GWAS jargon

Locus - genetic position on a chromosome, and a single base pair position in the context of SNPs

SNP - a locus (single base pair) that exhibits variation (polymorphism) in a population

Allele (in the context of SNPs) - the alternative forms of a nucleotide at a particular locus

Genotype - the pair of alleles at a locus, one paternal and one maternal

Heterozygous - the two alleles differ at a locus

Homozygous - the two alleles are identical at a locus

Genotyped SNP - we have observed the genotype at a particular SNP, e.g. because the SNP is among the 1 million on the SNP array we used

Ungenotyped SNP - we have not observed the genotype at a particular locus

Causal SNP - a SNP that directly affects the phenotype, e.g. a mutation changes the amino acid sequence of a protein and changes the protein's function in a way that directly affects a biological process

Haplotype - a group of SNPs that are inherited jointly from a parent

Linkage disequilibrium - alleles at multiple loci that exhibit a dependence (nonrandom association)

GWAS data

<table>
<thead>
<tr>
<th>Individual</th>
<th>Genotype at Position 1</th>
<th>Genotype at Position 2</th>
<th>Genotype at Position 3</th>
<th>...</th>
<th>Genotype at Position M</th>
<th>Disease?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CC</td>
<td>AG</td>
<td>GG</td>
<td></td>
<td>AA</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>AC</td>
<td>AA</td>
<td>TG</td>
<td></td>
<td>AA</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>AA</td>
<td>AA</td>
<td>GG</td>
<td></td>
<td>AT</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>AC</td>
<td>AA</td>
<td>TT</td>
<td></td>
<td>AT</td>
<td>N</td>
</tr>
</tbody>
</table>

- N individuals genotyped at M positions
- Disease status (or other phenotype) is measured for each individual
GWAS task

- *Given*: genotypes and phenotypes of individuals in a population
- *Do*: identify which genomic positions are associated with a given phenotype
Can we identify causal SNPs?

- Typically only genotype at 1 million sites
- Humans vary at ~100 million sites
- Unlikely that an associated SNP is causal
- **Tag SNPs**: associated SNPs “tag” blocks of the genome that contain the causal variant

![Diagram of Genotyped, Ungenotyped causal, and Ungenotyped SNPs with haplotype block]

Haplotype block: interval in which little recombination has been observed
Direct and indirect associations

Phenotype

direct association

indirect association

direct association (haplotype block)
SNP imputation

• Estimate the ungenotyped SNPs using reference haplotypes

1000 Genomes

SNP array

Reference data

G A T
G A T
C T C
C T C

New data

G ? T
C ? C

Imputed data

G A T
C T C

Nielsen *Nature* 2010
Basics of association testing

• Test each site individually for association with a statistical test
 – each site is assigned a p-value for the null hypothesis that the site is not associated with the phenotype

• Correct for the fact that we are testing multiple hypotheses
Basic genotype test

- Assuming binary phenotype (e.g., disease status)
- Test for significant association with Pearson’s Chi-squared test or Fisher’s Exact Test

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>AA</th>
<th>AT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>No disease</td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Chi-squared test p-value = 4.1e-5 (2 degrees of freedom)
Fisher’s Exact Test p-value = 3.4e-5
Armitage (trend) test

- Can gain more statistical power if we can assume that probability of trait is linear in the number of one of the alleles

![Graph showing the trend of Case / (case + control) for genotypes TT, AT, and AA over genotype scores from 0 to 2.](Balding Nature Reviews Genetics 2006)
Trend test example

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>AT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>No disease</td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Disease proportion 0.36 0.60 0.75

Trend in Proportions test p-value = 8.1×10^{-6}

(note that this is a smaller p-value than from the basic genotype test)
GWAS challenges

• Population structure
• Interacting variants
• Multiple testing
• Interpreting hits
Population structure issues

- If certain populations disproportionally represent cases or controls, then spurious associations may be identified.

One SNP for \(N = 40 \) individuals

Individual with genotype 1:
- ACTCTACGTAC
- ACTCTACGTAC

Individual with genotype 2:
- ACTCTTTCGTAC
- ACTCTTTCGTAC

Case
- Population 1
- Population 2

Control

Balding *Nature Reviews Genetics* 2006
Interacting variants

• Most traits are *complex*: not the result of a single gene or genomic position

• Ideally, we’d like to test *subsets* of variants for associations with traits
 – But there are a *huge* number of subsets!
 – Multiple testing correction will likely result in zero association calls

• Area of research
 – Only test carefully selected subsets
 – Bayesian version: put prior on subsets
Multiple testing

• In the genome-age, we have the ability to perform large numbers of statistical tests simultaneously
 – SNP associations (~1 million)
 – Gene differential expression tests (~ 20 thousand)
• Do traditional p-value thresholds apply in these cases?
Multiple testing

Bennett et al. “Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction”

• “One mature Atlantic Salmon (Salmo salar) participated in the fMRI study. The salmon was… not alive at the time of scanning.”

• “The salmon was shown a series of photographs depicting human individuals… [and] asked to determine what emotion the individual in the photo must have been experiencing.”

• fMRI to assess changes in brain activity

From Simply Statistics post on messed up data analyses
Multiple testing

Bennett et al. “Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction”

t-test finds 16 significant voxels ($p < 0.001$)
Expression in BRCA1 and BRCA2 Mutation-Positive Tumors

- 7 patients with BRCA1 mutation-positive tumors vs. 7 patients with BRCA2 mutation-positive tumors
- 5631 genes assayed

Expression in BRCA1 and BRCA2 Mutation-Positive Tumors

• Key question: which genes are differentially expressed in these two sets of tumors?

• Methodology: for each gene, use a statistical test to assess the hypothesis that the expression levels differ in the two sets
Hypothesis testing

• Consider two competing hypotheses for a given gene
 – *null hypothesis*: the expression levels in the first set come from the same distribution as the levels in the second set
 – *alternative hypothesis*: they come from different distributions

• First calculate a test statistic for these measurements, and then determine its *p*-value

• *p*-value: the probability of observing a test statistic that is as extreme or more extreme than the one we have, assuming the null hypothesis is true
Calculating a p-value

1. Calculate test statistic (e.g. T statistic)

 \[T = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]

 where

 \[\bar{x}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij} \]

 \[s_j^2 = \frac{1}{n_j - 1} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2 \]

2. See how much mass in null distribution with value this extreme or more

 If test statistic is here, $p = 0.034$
Multiple testing problem

- If we’re testing one gene, the p-value is a useful measure of whether the variation of the gene’s expression across two groups is significant.

- Suppose that most genes are not differentially expressed.

- If we’re testing 5000 genes that don’t have a significant change in their expression (i.e. the null hypothesis holds), we’d still expect about 250 of them to have p-values ≤ 0.05.

- Can think of p-value as the false positive rate over null genes.
Family-wise error rate

- One way to deal with the multiple testing problem is to control the probability of rejecting at least one null hypothesis when all genes are null.
- This is the family-wise error rate (FWER).
- Suppose you tested 5000 null genes and predicted that all genes with p-values ≤ 0.05 were differentially expressed.

$$FWER = 1 - (1 - 0.05)^{5000} \approx 1$$

- you are guaranteed to be wrong at least once!
- above assumes tests are independent
Bonferroni correction

• Simplest approach
• Choose a p-value threshold β such that the FWER is $\leq \alpha$

\[\alpha = 1 - (1 - \beta)^g \]

• where g is the number of genes (tests)

\[
\text{for } \beta g \ll 1, \quad \beta \approx \frac{\alpha}{g}
\]

• For $g=5000$ and $\alpha=0.05$ we set a p-value threshold of $\beta=1e-5$
Loss of power with FWER

• FWER, and Bonferroni in particular, reduce our power to reject null hypotheses
 – As g gets large, p-value threshold gets very small
• For expression analysis, FWER and false positive rate are not really the primary concern
 – We can live with false positives
 – We just don’t want too many of them relative to the total number of genes called significant
The False Discovery Rate

[Benjamini & Hochberg ‘95; Storey & Tibshirani ‘02]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
</tr>
</tbody>
</table>

- Suppose we pick a threshold, and call genes above this threshold “significant”
- The *false discovery rate* is the expected fraction of these that are mistakenly called significant (i.e. are truly null)
The False Discovery Rate

<table>
<thead>
<tr>
<th></th>
<th>Called significant</th>
<th>Called not significant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null true</td>
<td>F</td>
<td>$m_0 - F$</td>
<td>m_0</td>
</tr>
<tr>
<td>Alternative true</td>
<td>T</td>
<td>$m_1 - T$</td>
<td>m_1</td>
</tr>
<tr>
<td>Total</td>
<td>S</td>
<td>$m - S$</td>
<td>m</td>
</tr>
</tbody>
</table>

false positives (false discoveries)

true positives

total significant at threshold

features (genes)

Storey & Tibshirani *PNAS* 100(16), 2002
The False Discovery Rate

\[F(t) = \# \{ \text{null } p_i \leq t; i = 1 \ldots m \} \]

\[S(t) = \# \{ p_i \leq t; i = 1 \ldots m \} \]

\[FDR(t) = E \left[\frac{F(t)}{S(t)} \right] \approx \frac{E[F(t)]}{E[S(t)]} \]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
</tr>
</tbody>
</table>

p-value threshold

genes
The False Discovery Rate

- To compute the FDR for a threshold t, we need to estimate $E[F(t)]$ and $E[S(t)]$

$$FDR(t) = E\left[\frac{F(t)}{S(t)} \right] \approx \frac{E[F(t)]}{E[S(t)]}$$

estimate by the observed $S(t)$

$S(t) = \# \{ p_i \leq t; i = 1 \ldots m \}$

$F(t) = \# \{ \text{null } p_i \leq t; i = 1 \ldots m \}$

- So how can we estimate $E[F(t)]$?
Estimating $E[F(t)]$

- Two approaches we’ll consider
 - Benjamini-Hochberg
 - Storey-Tibshirani (q-value)

- Different assumptions about null features (m_0)
Benjamini-Hochberg

• Suppose the fraction of genes that are truly null is very close to 1 so \(m_0 \approx m \)
• Then

\[
E[F(t)] = E[\# \{ \text{null } p_i \leq t; i = 1 \ldots m \}] \approx mt
\]
• Because \(p \)-values are uniformly distributed over \([0,1]\) under the null model
• Suppose we choose a threshold \(t \) and observe that \(S(t) = k \)

\[
FDR(t) \approx \frac{E[F(t)]}{S(t)} = \frac{mt}{k}
\]
Benjamini-Hochberg

• Suppose we want FDR $\leq \alpha$
• Observation:

$$FDR(t) \leq \alpha$$

$$\frac{mt}{k} \leq \alpha$$

$$t \leq \frac{k}{m} \alpha$$
Benjamini-Hochberg

• Algorithm to obtain FDR $\leq \alpha$

• Sort the p-values of the genes so that they are in increasing order

$$P(1) \leq P(2) \ldots \leq P(m)$$

• Select the largest k such that

$$P(k) \leq \frac{k}{m} \alpha$$

• where we use $P(k)$ as the p-value threshold t
What fraction of the genes are truly null?

- Consider the \(p \)-value histogram from Hedenfalk et al.
 - includes both null and alternative genes
 - but we expect null \(p \)-values to be uniformly distributed

\[\hat{\pi}_0(\lambda) = \frac{\#\{ p_i > \lambda; i = 1 \ldots m \}}{m(1 - \lambda)} \]

\[\pi_0 = \frac{m_0}{m} \]

Storey & Tibshirani *PNAS* 100(16), 2002
Storey & Tibshirani approach

Estimated proportion of null p-values

$$FDR(t) \approx \frac{\hat{\pi}_0 \times m \times t}{\# \{ p_i \leq t \}}$$

$\hat{q}(p_i) = \min_{t \geq p_i} FDR(t)$

pick minimum FDR for all greater thresholds

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
<th>q-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
<td>0.0010</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
<td>0.0050</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
<td>0.0475</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
<td>0.0475</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
<td>0.0600</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
<td>0.0867</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
<td>0.1430</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
<td>0.4380</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
<td>0.5670</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
<td>0.7000</td>
</tr>
</tbody>
</table>
q-value example for gene J

\[m = 20 \quad t = 0.019 \]
\[\hat{\pi}_0 = 0.5 \quad \#\{ p_i \leq t \} = 4 \]

\[FDR(t) \approx \frac{\hat{\pi}_0 \times m \times t}{\#\{ p_i \leq t \}} \]
\[= \frac{0.5 \times 20 \times 0.019}{4} = 0.0475 \]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
<th>q-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
<td>0.0010</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
<td>0.0050</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
<td>0.0475</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
<td>0.0475</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
<td>0.0600</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
<td>0.0867</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
<td>0.1430</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
<td>0.4380</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
<td>0.5670</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
<td>0.7000</td>
</tr>
</tbody>
</table>

\[\hat{q}(p_i) = \min_{t \geq p_i} FDR(t) \]

In this case, already have minimum FDR for all greater thresholds
q-values vs. p-values for Hedenfalk et al.

Storey & Tibshirani *PNAS* 100(16), 2002
FDR summary

• In many high-throughput experiments, we want to know what is different across two sets of conditions/individuals (e.g. which genes are differentially expressed)

• Because of the multiple testing problem, \textit{p}-values may not be so informative in such cases

• FDR, however, tells us which fraction of significant features are likely to be null

• \textit{q}-values based on the FDR can be readily computed from \textit{p}-values (see Storey’s R package \textit{qvalue})