Inferring Genetic Variation and Discovering Associations with Phenotypes

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2018
Anthony Gitter
gitter@biostat.wisc.edu
Outline

• Variation detection
 – Array technologies
 – Whole-genome sequencing

• Genome-wide association study (GWAS) basics
 – Testing SNPs for association
 – Correcting for multiple-testing
Variation detecting technologies

• Array-based technologies
 – Relies on hybridization of sample DNA to pre-specified probes
 – Each probe is chosen to measure a single possible variant: SNP, CNV, etc.

• Sequencing-based technologies
 – Whole-genome shotgun sequence, usually at low coverage (e.g., 4-8x)
 – Align reads to reference genome: mismatches, indels, etc. indicate variations
 – Long read sequencing
Array-based technologies

• Currently two major players
• Affymetrix Genome-Wide Human SNP Arrays
 – Used for HapMap project, Navigenics service
• Illumina BeadChips
 – Used by 23andMe, deCODEme services
Affymetrix SNP arrays

- Probes for ~900K SNPs
- Another ~900K probes for CNV analysis
- Differential hybridization – one probe for each possible SNP allele

Fluorescent tag on sample DNA

Probes for one SNP at a known locus
Illumina BeadChips

- **OmniExpress+**
 - ~900K SNPs (700K fixed, 200 custom)
- Array with probes immediately adjacent to variant location
- Single base extension (like sequencing) to determine base at variant location
Sequencing-based genotyping

compute $\text{argmax} \ P(\text{genotype} \mid \text{reads, reference})$ for each genomic position

reference

ACTCTACGTAACGATCGTGCCTACGTGCTAGCTAGTCGCAC

reads

GATCGTCGCTACGTGCTAG
CTCTACGTACGATCGTGCCTACGTGCTAGCTAGTCGCAC
CGATCATCGCTACGTGCTACGTGCTAGCTAGTCGCAC
TACGATCATCGCTACGTGCTACGTGCTAGCTAGTCGCAC
CTACGTAAGATCATCGCTACGTGCTACGTGCTAGCTAGTCGCAC
AGATCATCGCTACGTGCTACGTGCTAGCTAGTCGCAC
ACGATCATCGCTACGTGCTACGTGCTAGCTAGTCGCAC
CGTACGATCGTGCCTACGTGCTACGTGCTAGCTAGTCGCAC
Long read sequencing

- Pacific Biosciences SMRT
- MinION nanopore
- Illumina TruSeq Synthetic

De novo assembly of two Swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of population-scale sequencing data

- Adam Ameur, Huiwen Che, Marcel Martin, Ignas Bunikis, Johan Dahlberg, Ida Höijer, Susana Häggqvist, Francesco Vezzi, Jessica Nordlund, Pall Olason, Lars Feuk, Ulf Gyllensten

doi: https://doi.org/10.1101/267062

- “over 10 Mb of sequences absent from the human GRCh38 reference in each individual”
GWAS jargon

Locus - genetic position on a chromosome, and a single base pair position in the context of SNPs
SNP - a locus (single base pair) that exhibits variation (polymorphism) in a population
Allele (in the context of SNPs) - the alternative forms of a nucleotide at a particular locus
Genotype - the pair of alleles at a locus, one paternal and one maternal
Heterozygous - the two alleles differ at a locus
Homozygous - the two alleles are identical at a locus
Genotyped SNP - we have observed the genotype at a particular SNP, e.g. because the SNP is among the 1 million on the SNP array we used
Ungenotyped SNP - we have not observed the genotype at a particular locus
Causal SNP - a SNP that directly affects the phenotype, e.g. a mutation changes the amino acid sequence of a protein and changes the protein's function in a way that directly affects a biological process
Haplotype - a group of SNPs that are inherited jointly from a parent
Linkage disequilibrium - alleles at multiple loci that exhibit a dependence (nonrandom association)

GWAS data

<table>
<thead>
<tr>
<th>Individual</th>
<th>Genotype at Position 1</th>
<th>Genotype at Position 2</th>
<th>Genotype at Position 3</th>
<th>…</th>
<th>Genotype at Position M</th>
<th>Disease?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CC</td>
<td>AG</td>
<td>GG</td>
<td></td>
<td>AA</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>AC</td>
<td>AA</td>
<td>TG</td>
<td></td>
<td>AA</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>AA</td>
<td>AA</td>
<td>GG</td>
<td></td>
<td>AT</td>
<td>Y</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>AC</td>
<td>AA</td>
<td>TT</td>
<td></td>
<td>AT</td>
<td>N</td>
</tr>
</tbody>
</table>

- N individuals genotyped at M positions
- Disease status (or other phenotype) is measured for each individual
GWAS task

- *Given*: genotypes and phenotypes of individuals in a population
- *Do*: identify which genomic positions are associated with a given phenotype
Can we identify causal SNPs?

- Typically only genotype at 1 million sites
- Humans vary at ~100 million sites
- Unlikely that an associated SNP is causal
- **Tag SNPs**: associated SNPs “tag” blocks of the genome that contain the causal variant

Haplotype block: interval in which little recombination has been observed
Direct and indirect associations

- Direct association (haplotype block)
- Indirect association
SNP imputation

• Estimate the ungenotyped SNPs using reference haplotypes

1000 Genomes

SNP array

Reference data

<table>
<thead>
<tr>
<th>SNP array</th>
<th>1000 Genomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
</tr>
</tbody>
</table>

New data

<table>
<thead>
<tr>
<th>SNP array</th>
<th>1000 Genomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>?</td>
</tr>
<tr>
<td>C</td>
<td>?</td>
</tr>
</tbody>
</table>

Imputed data

<table>
<thead>
<tr>
<th>SNP array</th>
<th>1000 Genomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
</tr>
</tbody>
</table>

Nielsen Nature 2010
Basics of association testing

• Test each site individually for association with a statistical test
 – each site is assigned a p-value for the null hypothesis that the site is not associated with the phenotype

• Correct for the fact that we are testing multiple hypotheses
Basic genotype test

- Assuming binary phenotype (e.g., disease status)
- Test for significant association with Pearson’s Chi-squared test or Fisher’s Exact Test

<table>
<thead>
<tr>
<th>phenotype</th>
<th>genotype</th>
<th>AA</th>
<th>AT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td></td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>No disease</td>
<td></td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Chi-squared test p-value = 4.1e-5 (2 degrees of freedom)
Fisher’s Exact Test p-value = 3.4e-5
Armitage (trend) test

- Can gain more statistical power if we can assume that probability of trait is linear in the number of one of the alleles

![Graph showing the trend of Case / (case + control) score against Genotype score. The graph has three points labeled TT, AT, and AA, with the trend line showing a decrease as the genotype score increases.](Balding Nature Reviews Genetics 2006)
Trend test example

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>AT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>No disease</td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

| Disease proportion | 0.36 | 0.60 | 0.75 |

Trend in Proportions test p-value = 8.1e-6

(note that this is a smaller p-value than from the basic genotype test)
GWAS challenges

- Population structure
- Interacting variants
- Multiple testing
- Interpreting hits
Population structure issues

- If certain populations disproportionately represent cases or controls, then spurious associations may be identified.

One SNP for $N = 40$ individuals

Individual with genotype 1: ACTCTACGTAC

Individual with genotype 2: ACTCTTCGTAC

Balding Nature Reviews Genetics 2006
Interacting variants

• Most traits are *complex*: not the result of a single gene or genomic position

• Ideally, we’d like to test *subsets* of variants for associations with traits
 – But there are a *huge* number of subsets!
 – Multiple testing correction will likely result in zero association calls

• Area of research
 – Only test carefully selected subsets
 – Bayesian version: put prior on subsets
Multiple testing

• In the genome-age, we have the ability to perform large numbers of statistical tests simultaneously
 – SNP associations (~1 million)
 – Gene differential expression tests (~ 20 thousand)

• Do traditional p-value thresholds apply in these cases?
Multiple testing

Bennett et al. “Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction”

• “One mature Atlantic Salmon (Salmo salar) participated in the fMRI study. The salmon was… not alive at the time of scanning.”
• “The salmon was shown a series of photographs depicting human individuals… [and] asked to determine what emotion the individual in the photo must have been experiencing.”
• fMRI to assess changes in brain activity

From Simply Statistics post on messed up data analyses
Multiple testing

Bennett et al. “Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction”

t-test finds 16 significant voxels ($p < 0.001$)
Expression in BRCA1 and BRCA2 Mutation-Positive Tumors

- 7 patients with BRCA1 mutation-positive tumors vs. 7 patients with BRCA2 mutation-positive tumors
- 5631 genes assayed

Key question: which genes are differentially expressed in these two sets of tumors?

Methodology: for each gene, use a statistical test to assess the hypothesis that the expression levels differ in the two sets.
Hypothesis testing

• Consider two competing hypotheses for a given gene
 – *null hypothesis*: the expression levels in the first set come from the same distribution as the levels in the second set
 – *alternative hypothesis*: they come from different distributions

• First calculate a test statistic for these measurements, and then determine its *p*-value

• *p*-value: the probability of observing a test statistic that is as extreme or more extreme than the one we have, assuming the null hypothesis is true
Calculating a \(p \)-value

1. Calculate test statistic (e.g. T statistic)

\[
T = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}
\]

where

\[
\bar{x}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij}
\]

\[
s_j^2 = \frac{1}{n_j - 1} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2
\]

2. See how much mass in null distribution with value this extreme or more

If test statistic is here, \(p = 0.034 \)
Multiple testing problem

• If we’re testing one gene, the p-value is a useful measure of whether the variation of the gene’s expression across two groups is significant.

• Suppose that most genes are not differentially expressed.

• If we’re testing 5000 genes that don’t have a significant change in their expression (i.e. the null hypothesis holds), we’d still expect about 250 of them to have p-values ≤ 0.05.

• Can think of p-value as the false positive rate over null genes.
Family-wise error rate

• One way to deal with the multiple testing problem is to control the probability of rejecting at least one null hypothesis when all genes are null

• This is the family-wise error rate (FWER)

• Suppose you tested 5000 null genes and predicted that all genes with p-values ≤ 0.05 were differentially expressed

\[
FWER = 1 - (1 - 0.05)^{5000} \approx 1
\]

– you are guaranteed to be wrong at least once!
– above assumes tests are independent
Bonferroni correction

• Simplest approach
• Choose a p-value threshold β such that the FWER is $\leq \alpha$

$$\alpha = 1 - (1 - \beta)^g$$

• where g is the number of genes (tests)

for $\beta g \ll 1$, $\beta \approx \frac{\alpha}{g}$

• For $g=5000$ and $\alpha=0.05$ we set a p-value threshold of $\beta=1e-5$
Loss of power with FWER

• FWER, and Bonferroni in particular, reduce our power to reject null hypotheses
 – As \(g \) gets large, \(p \)-value threshold gets very small
• For expression analysis, FWER and false positive rate are not really the primary concern
 – We can live with false positives
 – We just don’t want too many of them relative to the total number of genes called significant
The False Discovery Rate

[Benjamini & Hochberg ‘95; Storey & Tibshirani ‘02]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
</tr>
</tbody>
</table>

- Suppose we pick a threshold, and call genes above this threshold “significant”

- The *false discovery rate* is the expected fraction of these that are mistakenly called significant (i.e. are truly null)
The False Discovery Rate

<table>
<thead>
<tr>
<th></th>
<th>Called significant</th>
<th>Called not significant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null true</td>
<td>F</td>
<td>$m_0 - F$</td>
<td>m_0</td>
</tr>
<tr>
<td>Alternative true</td>
<td>T</td>
<td>$m_1 - T$</td>
<td>m_1</td>
</tr>
<tr>
<td>Total</td>
<td>S</td>
<td>$m - S$</td>
<td>m</td>
</tr>
</tbody>
</table>

- **false positives (false discoveries)**
- **true positives**
- **total significant at threshold**
- **features (genes)**

Source: Storey & Tibshirani *PNAS* 100(16), 2002
The False Discovery Rate

The False Discovery Rate (FDR) is a measure used in multiple hypothesis testing to control the expected proportion of incorrectly rejected null hypotheses. It is given by the formula:

\[
F(t) = \#\{\text{null } p_i \leq t; i = 1\ldots m\}
\]

\[
S(t) = \#\{p_i \leq t; i = 1\ldots m\}
\]

\[
FDR(t) = E\left[\frac{F(t)}{S(t)}\right] \approx \frac{E[F(t)]}{E[S(t)]}
\]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
</tr>
</tbody>
</table>

The table shows the genes ranked by their p-values, with the p-value threshold indicated by the value of t.
The False Discovery Rate

• To compute the FDR for a threshold \(t \), we need to estimate \(E[F(t)] \) and \(E[S(t)] \)

\[
FDR(t) = E \left[\frac{F(t)}{S(t)} \right] \approx \frac{E[F(t)]}{E[S(t)]}
\]

\(S(t) = \# \{ p_i \leq t; i = 1 \ldots m \} \)

\(F(t) = \# \{ \text{null} p_i \leq t; i = 1 \ldots m \} \)

• So how can we estimate \(E[F(t)] \)?
Estimating $E[F(t)]$

- Two approaches we’ll consider
 - Benjamini-Hochberg
 - Storey-Tibshirani (q-value)

- Different assumptions about null features (m_0)
Benjamini-Hochberg

- Suppose the fraction of genes that are truly null is very close to 1 so $m_0 \approx m$
- Then

 $$E[F(t)] = E[\#\{\text{null } p_i \leq t; i = 1 \ldots m\}] \approx mt$$

- Because p-values are uniformly distributed over $[0,1]$ under the null model
- Suppose we choose a threshold t and observe that $S(t) = k$

 $$FDR(t) \approx \frac{E[F(t)]}{S(t)} = \frac{mt}{k}$$
Benjamini-Hochberg

• Suppose we want FDR ≤ α

• Observation:

\[
\begin{align*}
FDR(t) & \leq \alpha \\
\frac{mt}{k} & \leq \alpha \\
t & \leq \frac{k}{m} \alpha
\end{align*}
\]
Benjamini-Hochberg

- Algorithm to obtain FDR ≤ α
- Sort the p-values of the genes so that they are in increasing order

$$P_{(1)} \leq P_{(2)} \ldots \leq P_{(m)}$$

- Select the largest k such that

$$P_{(k)} \leq \frac{k}{m} \alpha$$

- where we use $P_{(k)}$ as the p-value threshold t
What fraction of the genes are truly null?

- Consider the p-value histogram from Hedenfalk et al.
 - includes both null and alternative genes
 - but we expect null p-values to be uniformly distributed

\[
\hat{\pi}_0(\lambda) = \frac{\# \{ p_i > \lambda; i = 1 \ldots m \}}{m(1 - \lambda)}
\]

\[
\pi_0 = \frac{m_0}{m}
\]

Storey & Tibshirani *PNAS* 100(16), 2002
Storey & Tibshirani approach

\[FDR(t) \approx \frac{\hat{\pi}_0 \times m \times t}{\#\{p_i \leq t\}} \]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
<th>q-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
<td>0.0010</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
<td>0.0050</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
<td>0.0475</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
<td>0.0475</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
<td>0.0600</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
<td>0.0867</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
<td>0.1430</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
<td>0.4380</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
<td>0.5670</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
<td>0.7000</td>
</tr>
</tbody>
</table>

\[\hat{q}(p_i) = \min_{t \geq p_i} FDR(t) \]
q-value example for gene J

\[m = 20 \quad t = 0.019 \]
\[\hat{\pi}_0 = 0.5 \quad \# \{ p_i \leq t \} = 4 \]

\[FDR(t) \approx \frac{\hat{\pi}_0 \times m \times t}{\# \{ p_i \leq t \}} \]
\[= \frac{0.5 \times 20 \times 0.019}{4} = 0.0475 \]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
<th>q-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
<td>0.0010</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
<td>0.0050</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
<td>0.0475</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
<td>0.0475</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
<td>0.0600</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
<td>0.0867</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
<td>0.1430</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
<td>0.4380</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
<td>0.5670</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
<td>0.7000</td>
</tr>
</tbody>
</table>

\[\hat{q}(p_i) = \min_{t \geq p_i} FDR(t) \]

In this case, already have minimum FDR for all greater thresholds.
q-values vs. p-values for Hedenfalk et al.

Storey & Tibshirani *PNAS* 100(16), 2002
FDR summary

• In many high-throughput experiments, we want to know what is different across two sets of conditions/individuals (e.g. which genes are differentially expressed)

• Because of the multiple testing problem, p-values may not be so informative in such cases

• FDR, however, tells us which fraction of significant features are likely to be null

• q-values based on the FDR can be readily computed from p-values (see Storey’s R package qvalue)