Today

- Introductions
- Course information
- Overview of course topics
My introduction

- Arrived in August, 2006
- Departments of Biostatistics & Medical Informatics and Computer Sciences
- Member of the Genome Center of Wisconsin
- Interests in comparative genomics
- Expertise in multiple whole-genome alignment
Your introductions

• Name
• Department
• Year
• Interests (academic/research)
Web site

- URL: http://www.biostat.wisc.edu/bmi776/
- Syllabus/Readings/Lectures
- Homeworks/Project
- Email list and archive
Office hours

- Times TBA

- 6720 Medical Sciences Center (MSC)

- Very confusing building

- Best bet: Enter from Charter St. at entrance marked “420 N. Charter,” turn right and take elevator to 6th floor
TA

- Dan Wong
- dwong@cs.wisc.edu
- Veteran of 576/776
Prerequisites

- BMI/CS 576
- Computer Science: Graphs, Dynamic Programming (at least CS 367)
- Statistics: Probability, Bayesian networks
- Biology: Knowledge at level learned from 576
Related courses of interest this semester

- Computer Science 769
 - Advanced Natural Language Processing
 - Taught by Professor Jerry Zhu
- Statistics 992
 - New statistical methods in molecular biology
 - Taught by Michael Newton
Seminars of interest

• CIBM Seminar Series
 • Tuesdays @ 4pm in Genetics/Biotech Auditorium

• Evolution seminar
 • Thursdays @ 12pm in 1360 Genetics/Biotech

• Associated discussion group (Biology 675) led by Nicole Perna
Required text

Biological sequence analysis
Probabilistic models of proteins and nucleic acids

R. Durbin
S. Eddy
A. Krogh
G. Mitchison
Reading

- Reading assignments for each lecture
- Types of reading
 - From textbook
 - Research articles
 - Notes passed out in class (better come!)
Grading

- Homework: 60%
- Project: 30%
- Participation: 10%

Tuesday, January 22, 2008
Participation

• Very small class
• Keys to participation
 • Show up to class!
 • Do the assigned reading
 • Don’t be afraid to ask questions
Homework

- Programming
 - Analyze real data
 - Preferred languages: C, C++, Java, & Python
- Written problems
 - Algorithm simulation
 - Proofs
Project

- Goals:
 - Develop a new model/algorithm
 - Implement it
 - Apply to a meaningful data set

<table>
<thead>
<tr>
<th>Milestones</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>March 27</td>
<td>Proposal</td>
</tr>
<tr>
<td>April 24</td>
<td>Progress Report</td>
</tr>
<tr>
<td>May 13</td>
<td>Final report</td>
</tr>
</tbody>
</table>
Computer accounts

• BMI UNIX machines
 • No lab, login remotely via SSH
 • May need VPN if off campus network
 • Machines: mi1.biostat.wisc.edu, mi2.biostat.wisc.edu
• Need UNIX help? Try CS1000 from DoIT
Major topics

- Biology of nucleic acids
- Modeling of nucleotide evolution
- Finding elements in genomes
- Genome alignment
- RNA structure and discovery
- Analysis of cellular networks
Plan of attack

• Before Spring break
 • core topics
 • most homework

• After Spring break
 • other topics, or more depth
 • project
Course goals

• We will have been successful if...

• You are aware of and understand the most important problems in computational molecular biology

• You have an understanding of the models and algorithms that are currently used for these problems.
Course theme

"Nothing in biology makes sense except in the light of evolution."
- Theodosius Dobzhansky

- Evolution as a tool in deciphering the genome
- “Comparative” models
- Combine within genome models with between genome models
Biology of nucleic acids

• How does DNA replicate and mutate?
• How do we define evolutionary relationships between DNA positions?
• How do we represent and classify such relationships?
• Key concepts: homology, tree theory
Modeling of nucleotide evolution

• How do we model the evolution of a set of sequences from an ancestral sequence?
• How can we use such models to infer trees?
• How might we reconstruct ancestral sequences?
• Key concepts: Markov models, Poisson processes, Rate matrices, Maximum likelihood, Bayesian analysis
Motif finding

• How can we find common (degenerate) patterns in a set of functionally similar sequences?

• Key concepts: Hidden Markov models, Gibbs sampling, Expectation-Maximization

CTATCGTAGCGACTGCTACTCGATAACTAGCT
CACTAGTCCATGCTTGCTAGGCAAGCTCGTAGC
CGATCGGGATTAAGTCGAAGCTCGCAAACCA
CGCAATTCCGATGCTCACATGAGCATTGGGCC
CATCTATGGCTCAAGTCGATCCTAGGACGA

24 Tuesday, January 22, 2008
Gene finding

- How do we find gene structures in the genomes of... Prokaryotes? Eukaryotes?
- Can we use comparative genomics to increase the accuracy of our predictions?
- Key concepts: Generalized HMMs, higher-order Markov models, Pair HMMs.
Alignment

• What is the meaning of sequence alignment?

• How do we align...
 • a pair of short sequences?
 • a pair of long sequences?
 • multiple sequences?
 • whole genomes?

CGCCTCGGGT
CGCC---GGT
CACCTAGTAC
CGCTACTTGC
CG--TCTTTGC
CGTAGCTTTTC
Alignment concepts

- Alignment combinatorics
- Statistical alignment
- Pair Hidden Markov Models
- Local alignment and statistics (Karlin-Altschul theorem)
- Parametric alignment
Pattern matching

• How can we quickly identify highly-similar substrings in sets of large sequences?

• Key concepts: Suffix trees/arrays, locality-sensitive hashing, q-gram filtration, randomized matching
RNA

- How can we predict the secondary structure of RNA?
- How can we locate RNAs of a given structure within a genome?
- Key concepts: Energy minimization, Stochastic context free grammars
Cellular Networks

- How can we infer and represent interactions between cellular components?
- How can we determine important functional modules within networks?
- Key concepts: Graph theory, network properties, Inference of Bayesian networks
Next time

- Topic: “The trees of life”
- Assignments for Thursday:
 - Do assigned readings (check Web site)
 - Log in to BMI machines and change password (use command “passwd”)
- First homework to be assigned on Thursday