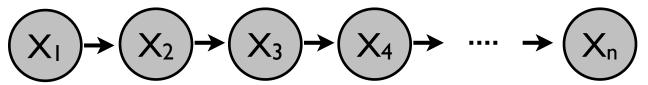
BMI/CS 776 Lecture 12 Eukaryotic Gene Finding

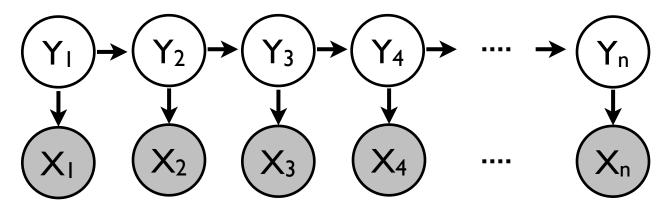
Colin Dewey February 28, 2008

Markov models & hidden Markov models for sequences

- Markov model:
 - states are the sequence characters (observed)

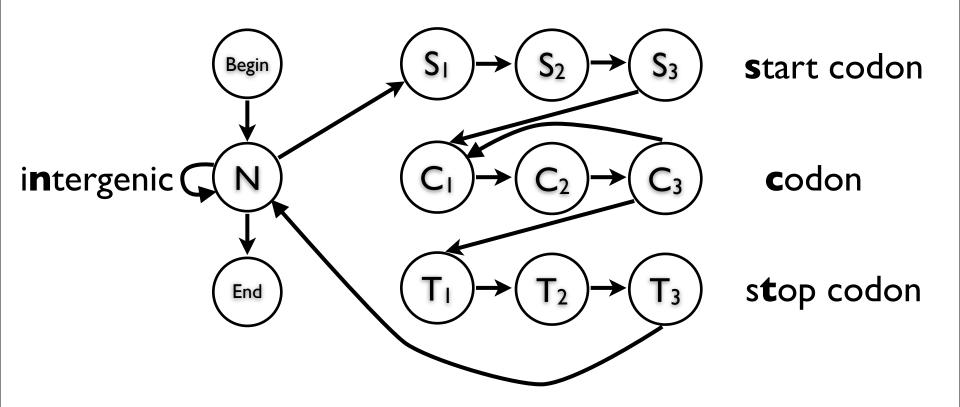


- hidden Markov model (HMM):
 - states are sequence classes (hidden)
 - classes "emit" observed sequence characters



HMMs for gene finding

 State transition diagram (not the graphical model!) for simple Prokaryotic gene HMM



Viterbi parses

 Use Viterbi algorithm to calculate most likely joint configuration of hidden states (a parse)

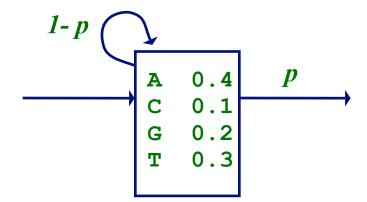
Example parse:

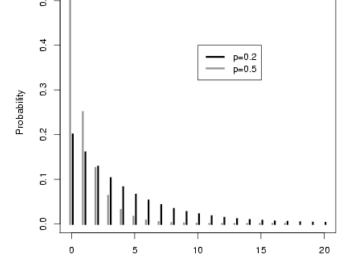
CTGCGTAGATGCTAATGTCATCGCTATAGATCTGC

Duration Modeling in HMMs

 suppose we have a type of sequence for which the base distribution is the same regardless of length

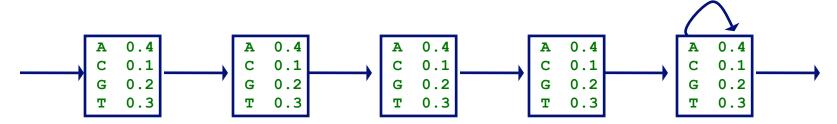
the simplest way to model it:



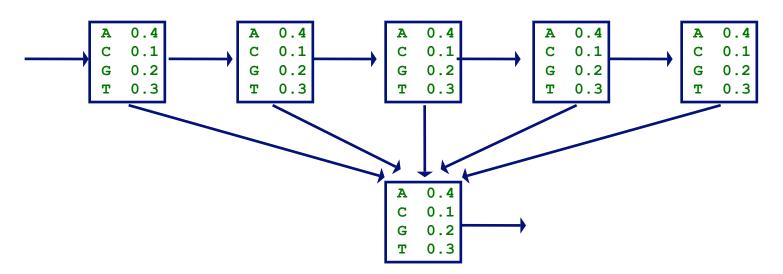


• this encodes a geometric distribution on the length of sequences

Duration Modeling in HMMs

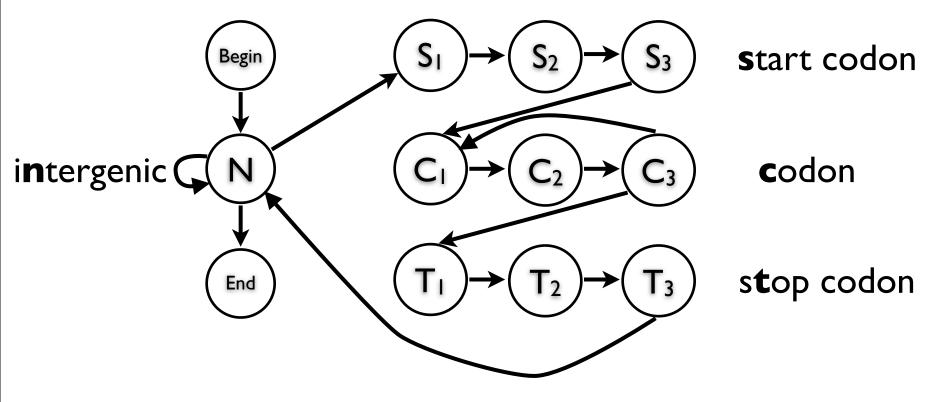


min length = 5; geometric distribution over longer sequences



arbitrary distribution over length 2 to 6

Lengths in our simple HMM



- Intergenic regions: geometric
- Number of codons in gene: geometric

Length Distributions of Introns/Exons

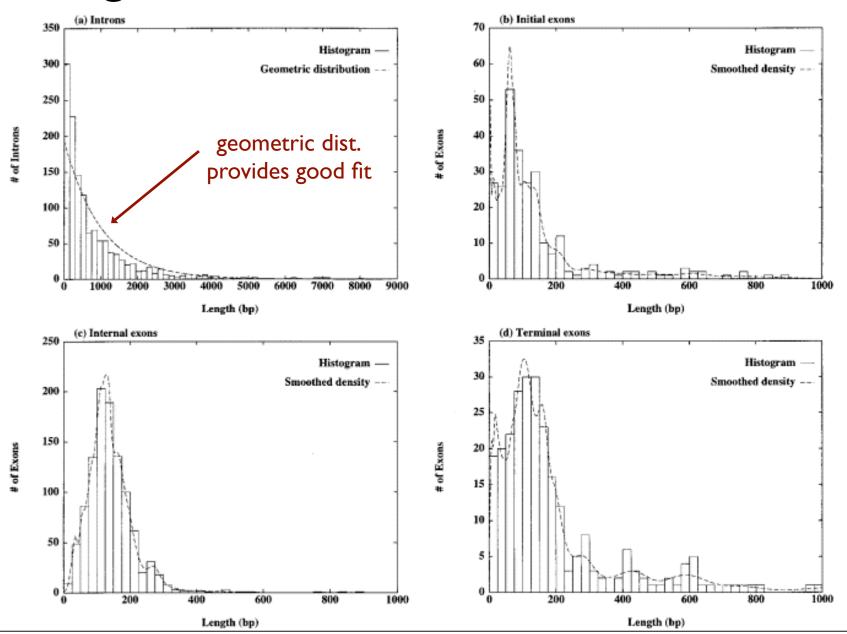
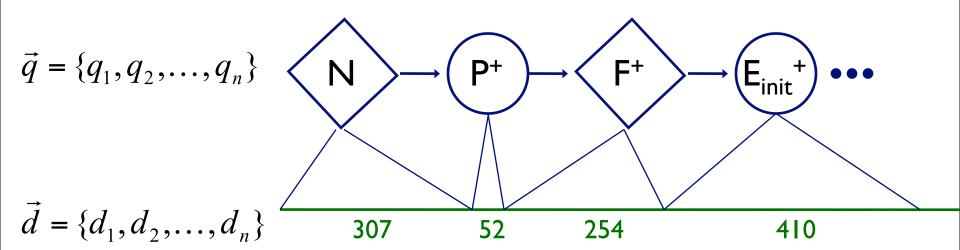


Figure from Burge & Karlin, Journal of Molecular Biology, 1997

Semi-Markov HMMs (a.k.a. Generalized HMMs)

- key idea: decouple length from composition
- represent a parse Π, as a sequence of states and associated lengths (durations)

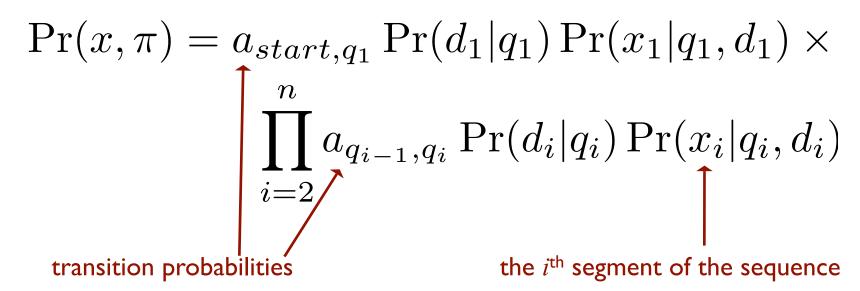


Semi-Markov Models

 representing a parse TT, as a sequence of states and associated lengths (durations)

$$\vec{q} = \{q_1, q_2, \dots, q_n\}$$
 $\vec{d} = \{d_1, d_2, \dots, d_n\}$

• the joint probability of generating parse π and sequence x



DP with Semi-Markov Models

review: Forward algorithm recurrence for HMMs

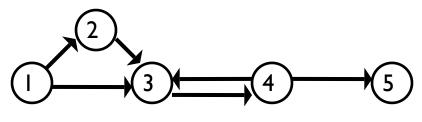
$$f_l(i) = \sum_{k} \left[f_k(i-1) a_{kl} \Pr(x_i|q_l) \right]$$
transition prob. of emitting from k to l \mathbf{x}_i from l

• for semi-Markov models: each Forward value assumes we're ending a segment in the given state

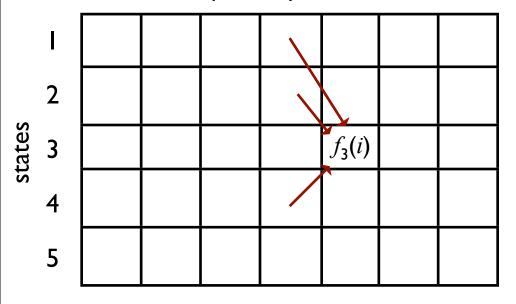
$$f_l(i) = \sum_k \sum_{d=1}^D \left[f_k(i-d) a_{kl} \Pr(d|q_l) \Pr(x_{i-d+1} \dots x_i|q_l) \right]$$

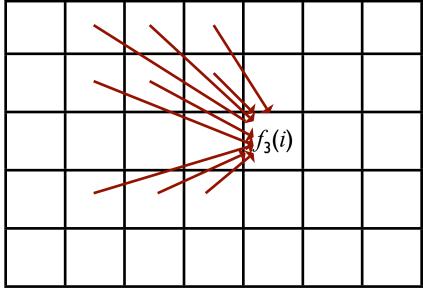
$$\underset{d \text{ segment from } l}{\text{prob. of length}} \text{prob. of emitting}$$

DP with Semi-Markov Models



sequence positions

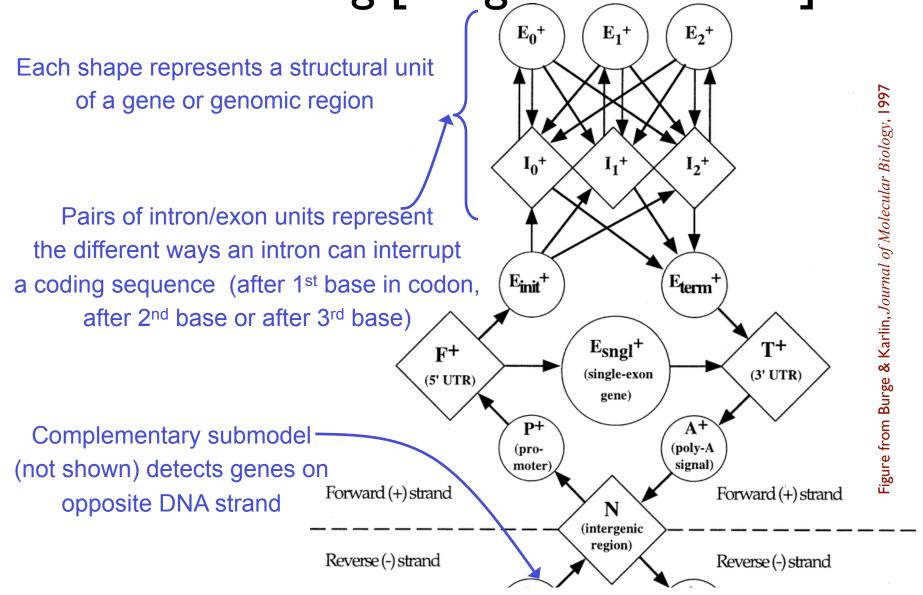




complexity of Viterbi/Forward/Backward in standard HMMs is $O(S^2L)$ where S = number of states, L = sequence length

complexity in semi-Markov HMMs is $O(S^2LD)$ where D = maximum length of a segment

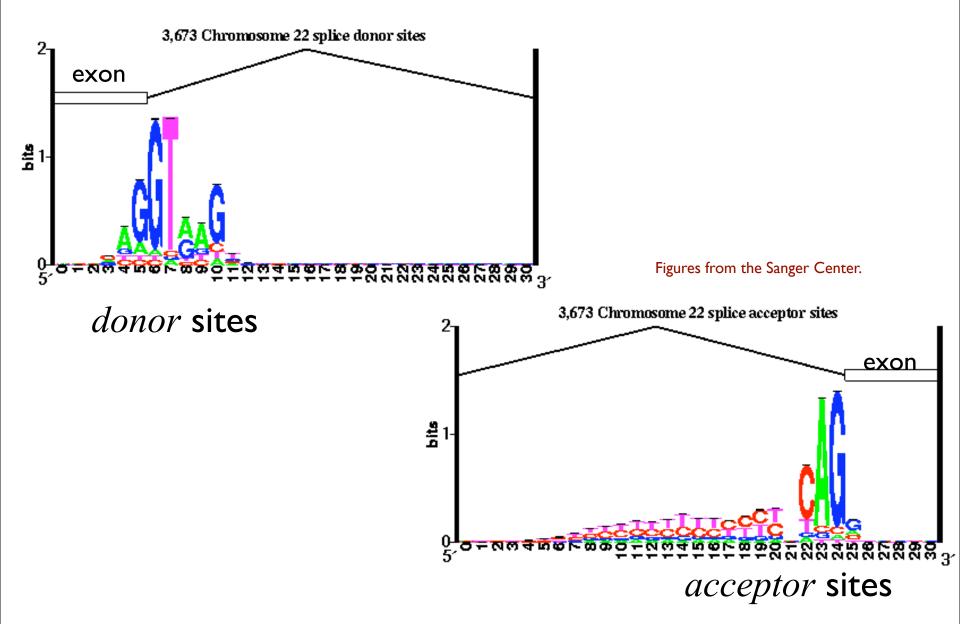
The GENSCAN HMM for Eukaryotic Gene Finding [Burge & Karlin '97]



The GENSCAN HMM

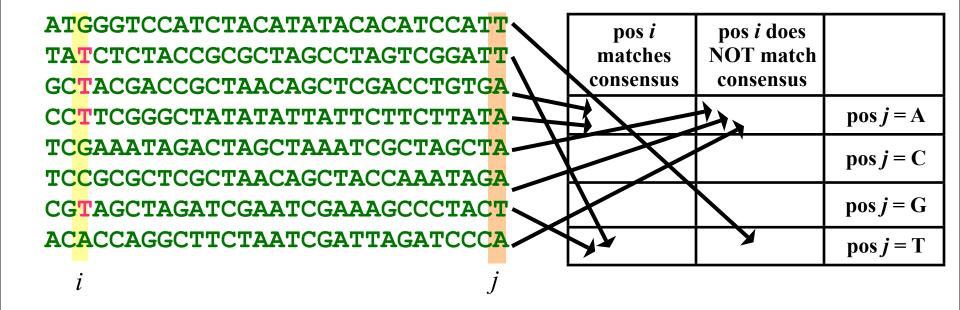
- for each sequence type, GENSCAN models
 - the length distribution
 - the sequence composition
- length distribution models vary depending on sequence type
 - * nonparametric (using histograms)
 - parametric (using geometric distributions)
 - fixed-length
- sequence composition models vary depending on type
 - 5th-order, inhomogeneous (exons)
 - 5th-order homogenous (noncoding classes)
 - Ist-order inhomogeneous (acceptor splice site)
 - * tree-structured variable memory (MDD) (donor splice site)

Splice Signals



Motivation for MDD

 How can we model significant dependencies between non-adjacent positions?



compute χ^2 values using 2×4 table alternative hypothesis: distribution for column j depends on what is in column i null hypothesis: distribution for column j is the same in both cases

Motivation for MDD

- Table shows χ^2 values for pairs of positions around donor sites
- values marked with * show statistically significant dependency

Table 4. Dependence between positions in human donor splice sites: χ^2 – statistic for consensus indicator variable C_i versus nucleotide indicator X_i

i	Con	<i>j</i> : −3	-2	-1	+3	+4	+5	+6	Sum
-3	c/a	Sanana Sanana	61.8*	14.9	5.8	20.2*	11.2	18.0 *	131.8*
-2	A	115.6*		40.5*	20.3*	57.5*	59.7*	42.9*	336.5*
-1	G	15.4	82.8*	Communication	13.0	61.5*	41.4*	96.6∻	310.8*
+3	a/g	8.6	17.5*	13.1	-	19.3*	1.8	0.1	60.5*
+4	A	21.8*	56.0*	62.1*	64.1*		56.8*	0.2	260.9*
+5	\mathbf{G}	11.6	60.1*	41.9*	93.6*	146.6*	<u> </u>	33.6*	387.3*
+6	t	22.2*	40.7*	103.8*	26.5*	17.8*	32.6∗		243.6*

The Maximal Dependence Decomposition (MDD) Approach

- induce a <u>tree</u> that represents the dependency structure apparent in the data
- induce partial <u>position weight matrices</u> for each node and leaf of tree

	1	2	3	4	5	6	7	8
A	0.1	0.3	0.1	0.2	0.2	0.4	0.3	0.1
C	0.5	0.2	0.1	0.1	0.6	0.1	0.2	0.7
G	0.2	0.2	0.6	0.5	0.1	0.2	0.2	0.1
T	0.2	0.3	0.2	0.2	0.1	0.3	0.3	0.1

 use the tree + weight matrices to calculate the probability of a given sequence

An MDD Learned Tree

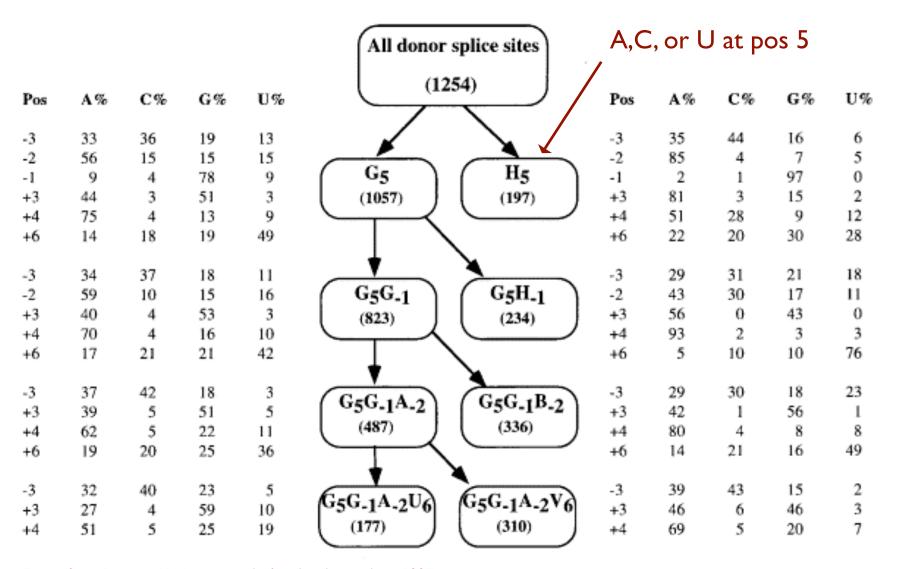


Figure from Burge & Karlin, Journal of Molecular Biology, 1997

The MDD Algorithm: Learning the Tree

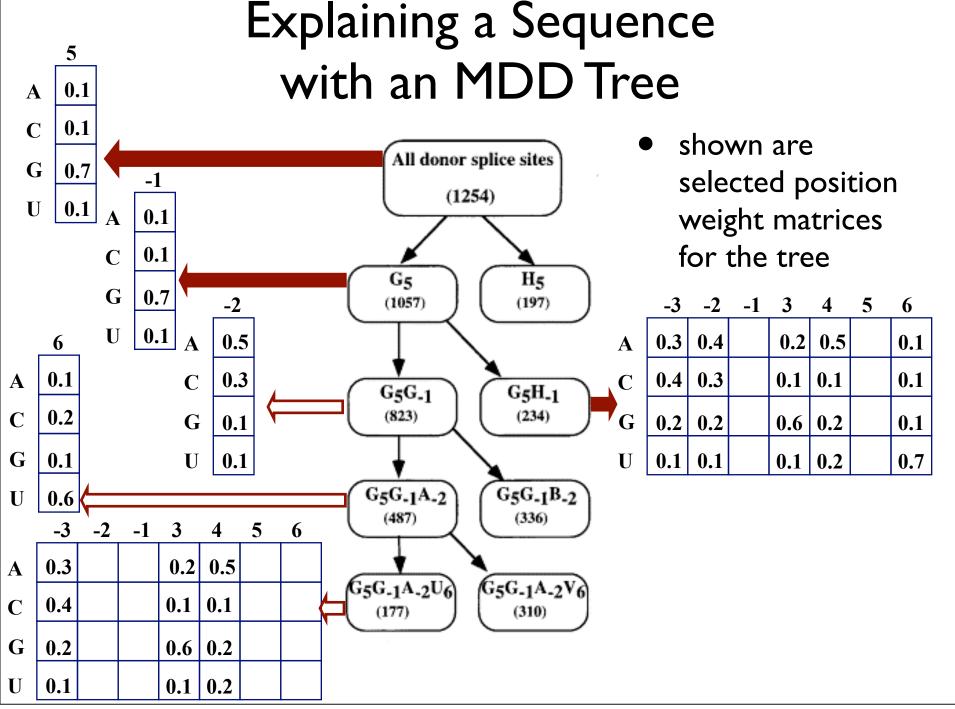
```
Given: a set of aligned training sequences T
positions P = \{1, ..., k\}
tree = find_MDD_subtree(T, P)
find_MDD_subtree(T, P)
for each position i in P
    determine the consensus base C_i
                                                            S_i = \sum_{i \neq i} \chi^2(C_i, x_j)
    calculate dependence between C_i , other positions
if stopping criteria not met
    choose i such that S_i is maximal
    make a node with C_i as the test
    D_i^+ = sequences in T with base C_i at position i
    D_i^- = other sequences
    left subtree = find_MDD_subtree(D_i^+, P - \{i\})
    right subtree = find_MDD_subtree(D_i^-, P - \{i\})
```

Stopping Criteria for MDD Tree Learning

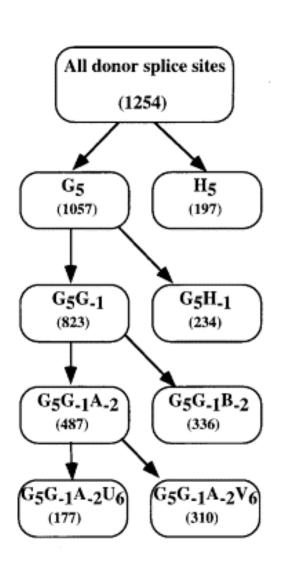
1. the $(k-1)^{th}$ level is reached; no further positions to split on

2. no significant dependencies between positions are detected

number of sequences in given subset is sufficiently small



Explaining a Sequence with an MDD Tree



calculate $Pr(x_5)$

if $x_5 \neq G$, use the weight matrix for H_5 subset else

calculate $Pr(x_{-1})$ from from G_5 subset

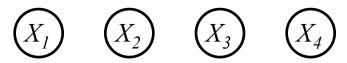
if $x_{-1} \neq G$, use the WM for G_5H_{-1} subset

else

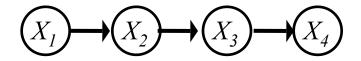
calculate $\Pr(x_{-2})$ from G_5G_{-1} subset

Graphical Model View

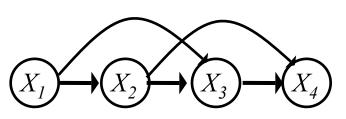
0th order Markov model (e.g., Profile matrix)



Ist order Markov model



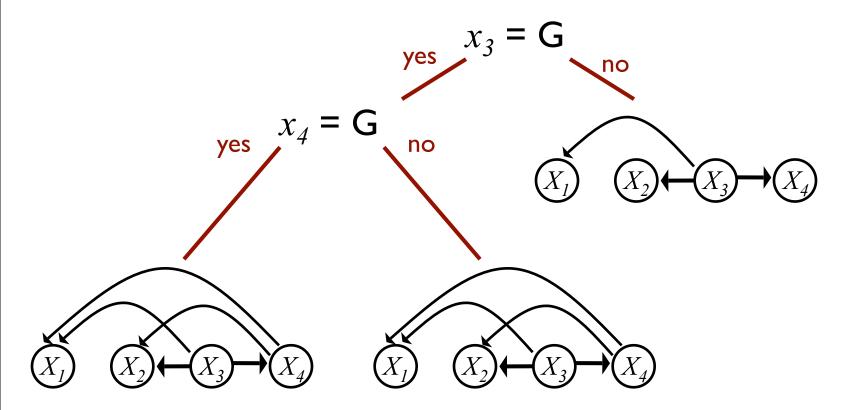
2nd order Markov model



 for a fixed-length model, we could consider arbitrary dependencies

Graphical Models from a MDD tree

 MDD allows arbitrary dependencies conditioned on realization of certain variables



GENSCAN Conclusions

- HMMs readily enable background knowledge to be incorporated into the model
 - state topology
 - length distributions
 - order of Markov chains
- key technical ideas
 - semi-Markov models (old): can represent arbitrary length distributions
 - MDD (new): can represent context-specific dependencies