Overemphasis on sensitivity

- Performance of most multiple alignment programs has been evaluated in terms of sensitivity (recall) alone
 - sensitivity = number of correctly predicted homologous positions / number of true pairs of homologous positions
- Precision (referred to as specificity in the multiple alignment literature), is also very important, if not equally important
- Lack of ROC analysis, tunable parameters for tradeoff
AMAP

- Schwartz & Pachter, 2007
- Key ideas:
 - Objective function based on PHMM probabilities and alignment metric - *alignment metric accuracy*
 - *Sequence annealing* - Alignment constructed one match at a time. Not progressive!
Partial global multiple alignment

A partial global multiple alignment of sequences $\sigma_1, \ldots, \sigma_k$ is a partially ordered set $P = \{c_1, \ldots, c_m\}$ together with a surjective function $\varphi : S_{\sigma_1, \ldots, \sigma_k} \to P$ such that $\varphi((i, j_1)) \leq \varphi((i, j_2))$ if $j_1 \leq j_2$

- c_1, \ldots, c_m: columns in multiple alignment
- P: the “alignment poset”
- surjective: φ maps at least one sequence position to every column c_i
- (i, j): position j in sequence i
Partial global alignment example

unaligned sequences

linear extension of poset
(global multiple alignment)

Schwartz & Pachter, 2007
Sequence annealing algorithm

1: $M_L \leftarrow M_{Null}$
2: $i \leftarrow L$
3: while $\exists c_k^{M_i}, c_l^{M_i}$ such that $c_k^{M_i}$ and $c_l^{M_i}$ can be merged to produce M' and $f(M') \geq f(M_i)$ do
4: $M_{i-1} \leftarrow M'$
5: $i \leftarrow i - 1$
6: end while

null alignment

total length of sequences

column l of alignment i

score of alignment i

Schwartz & Pachter, 2007
Sequence annealing properties

\[M_L \supset M_{L-1} \supset M_{L-2} \ldots \supset M_r \]

\(M_i \) associated with poset \(P_i \), where \(|P_i| = i \)

\[f(M_{i+1}) \leq f(M_i) \]

\(M_{i+1} \) transformed to \(M_i \) by merging two columns, \(c_j^{M_{i+1}} \) and \(c_k^{M_{i+1}} \), into one \(c_l^{M_i} \)
Example of Multiple Alignment by Sequence Annealing

Ariel Schwartz and Lior Pachter
University of California, Berkeley
http://bio.math.berkeley.edu/amap/
Merging columns

• Need to perform two tasks
 • Check if two columns can be merged
 • Need to update poset after merge

• Solved by using an online topological ordering algorithm
 • Edges given one at a time
Choosing columns to merge

- Each pair of columns is assigned a weight
- Positively weighted pairs placed in heap
 - Heap gives highest weight pair in constant time
- When columns are merged, weights change
 - Require that weights decrease on merge
 - Don’t need to update weights on merge, only calculate new weight on pop from heap
Alignment metric accuracy

Alignment metric:
\[d(h^i, h^j) = n + m - 2|h^i_H \cap h^j_H| - |h^i_I \cap h^j_I| - |h^i_D \cap h^j_D| \]

Alignment metric accuracy:
\[g(h^i, h^j) = 1 - \frac{d(h^i, h^j)}{n + m} = \frac{2|h^i_H \cap h^j_H| + |h^i_I \cap h^j_I| + |h^i_D \cap h^j_D|}{n + m} \]

= fraction of positions aligned the same in both alignments

For multiple alignments:
\[d(h^i, h^j) = \sum_{s^1=1}^{k-1} \sum_{s^2>s^1}^{k} d(h^i_{s^1s^2}, h^j_{s^1s^2}) \]
\[g(h^p, h^r) = 1 - \frac{d(h^p, h^r)}{(k - 1) \sum_{i=1}^{k} n_i} \]
Expected AMA

• Using Pair HMM to give posterior probability of true alignment h^r we can calculate the expected alignment metric accuracy:

$$
\mathbb{E}_{h^r}[g(h, h^r)] = \frac{1}{n + m} \left(2 \sum_{(i,j) \in h_H} \mathbb{P}[\sigma^1_i \diamond \sigma^2_j | \sigma^1, \sigma^2] + \sum_{i \in h_D} \mathbb{P}[\sigma^1_i \diamond -] + \sum_{j \in h_I} \mathbb{P}[- \diamond \sigma^2_j | \sigma^1, \sigma^2] \right)
$$

• This is the pairwise expected AMA, the multiple alignment expected AMA is simply the sum-of-pairs version
PHMM posteriors

- Forward and backward algorithms for PHMMs - use to calculate posterior probabilities of alignment properties

- Specifically, interested in calculating the posterior probability of σ_1^i being aligned to σ_2^j

$$
\mathbb{P}[\sigma_1^i \bowtie \sigma_2^j | \sigma^1, \sigma^2] = \frac{\mathbb{P}[\sigma^1, \sigma^2, \sigma_1^i \bowtie \sigma_2^j]}{\mathbb{P}[\sigma^1, \sigma^2]} = \frac{\mathbb{P}[\sigma_1^1...i, \sigma_2^1...j, \sigma_1^i \bowtie \sigma_2^j] \mathbb{P}[\sigma_1^{i+1...n}, \sigma_2^{j+1...m} | \sigma_1^i \bowtie \sigma_2^j]}{\mathbb{P}[\sigma^1, \sigma^2]} = \frac{f^H(i, j) b^H(i, j)}{f^E(n, m)}
$$
AMAP objective function

\[f^{G_f}(M) = \sum_{\sigma^a, \sigma^b \mid a \neq b} \left(\sum_{(j, k) \mid \varphi^M(\sigma^a_j) = \varphi^M(\sigma^b_k)} P(\sigma^a_j \triangle \sigma^b_k \mid \sigma^a, \sigma^b, \theta) \right. \]
\[+ G_f \sum_{\{j \mid \forall \sigma^b_k \varphi^M(\sigma^a_j) \neq \varphi^M(\sigma^b_k)\}} P(\sigma^a_j \triangle - \mid \sigma^a, \sigma^b, \theta) \]
\[+ G_f \sum_{\{k \mid \forall \sigma^a_j \varphi^M(\sigma^a_j) \neq \varphi^M(\sigma^b_k)\}} P(- \triangle \sigma^b_k \mid \sigma^a, \sigma^b, \theta) \] \right). \]

- Family of functions, parameterized by \(G_f \) ("gap-factor")
- \(G_f = 0 \) : maximize \(f_D \) score (sensitivity)
- \(G_f = 0.5 \) : maximize expected AMA score
- \(G_f > 0.5 \) : higher specificity, lower sensitivity
Weight functions

- With the following definitions:

\[P_{\text{match}} = \sum_{\sigma_i^a \in \varphi^{-1}(c_k)} \sum_{\sigma_j^b \in \varphi^{-1}(c_l)} \mathbb{P}[^{\sigma_i^a} \diamondsuit \sigma_j^b | \sigma^a, \sigma^b] \]

\[P_{\text{gap}} = \sum_{\sigma_i^a \in \varphi^{-1}(c_k)} \sum_{\sigma_j^b \in \varphi^{-1}(c_l)} \mathbb{P}[^{\sigma_i^a} \diamondsuit - | \sigma^a, \sigma^b] + \mathbb{P}[- \diamondsuit \sigma_j^b | \sigma^a, \sigma^b] \]

- Define two possible weight functions:

\[
\omega_{\text{max}\text{step}}^{G_f}(c_k, c_l) = \frac{P_{\text{match}} - G_f P_{\text{gap}}}{|\varphi^{-1}(c_k)| |\varphi^{-1}(c_l)|}
\]

\[
\omega_{t\text{g}f}^{G_f}(c_k, c_l) = \frac{P_{\text{match}}}{P_{\text{gap}}} - G_f
\]
Comparison of AMAP

Schwartz & Pachter, 2007
AMAP Performance

Program	Twilight (209)		Superfamilies (425)		Overall by alignments		Overall by positions		Average time Seconds				
	f_D	f_M	AMA	f_D	f_M	AMA	f_D	f_M	AMA				
Align-m	21.6	23.6	51.7	49.2	45.6	56.9	40.1	38.3	55.2	35.2	45.4	56.6	12.7
CLUSTALW	25.6	14.7	24.9	54.0	38.1	43.8	44.7	30.4	37.6	33.6	19.5	28.2	**0.4**
DALIGN-T	21.3	19.8	45.5	49.9	44.9	54.8	40.4	36.6	51.7	33.9	38.6	52.5	1.4
MUSCLE	27.3	16.4	27.6	56.3	40.3	46.4	46.8	32.4	40.2	37.5	22.5	31.7	2.1
ProbCons	**32.1**	21.1	37.4	**59.8**	44.4	51.8	**50.7**	36.7	47.0	43.0	34.3	47.0	4.5
T-Coffee	26.7	18.1	35.2	56.5	42.8	50.3	46.7	34.7	45.3	39.4	31.5	44.5	11.3
AMAP$_{sn}$	30.9	22.4	40.9	58.8	45.3	53.3	49.6	37.8	49.2	**43.3**	39.1	51.9	2.4
AMAP	24.0	28.3	51.2	52.8	54.6	59.5	43.3	45.9	56.8	32.5	59.7	**59.6**	1.7
AMAP$_{sp}$	14.5	**41.5**	**56.5**	38.7	**69.4**	**60.2**	30.7	**60.2**	**59.0**	20.7	**78.1**	58.9	1.4

Entries show the average developer (f_D), modeler (f_M) and AMA scores. Best results are shown in boldface. All numbers have been multiplied by 100.

Schwartz & Pachter, 2007