BMI/CS Lecture #22 Stochastic Context Free Grammars for RNA Structure Modeling

Colin Dewey April 10, 2008

Modeling RNA with Stochastic Context Free Grammars

- consider tRNA genes
 - 274 in yeast genome, ~1500 in human genome
 - get transcribed, like protein-coding genes
 - don't get translated, therefore base statistics much different than protein-coding genes
 - but secondary structure is conserved
- to recognize new tRNA genes, model known ones using stochastic context free grammars [Eddy & Durbin, 1994; Sakakibara et al. 1994]
- but what is a grammar?

Transformational Grammars

- a transformational grammar characterizes a set of legal strings
- the grammar consists of
 - a set of abstract *nonterminal* symbols

$$\{s, c_1, c_2, c_3, c_4\}$$

a set of terminal symbols (those that actually appear in strings)

$${A, C, G, U}$$

• a set of productions

$$c_1 \rightarrow Uc_2$$
 $c_2 \rightarrow Ac_3$ $c_3 \rightarrow A$ $c_3 \rightarrow G$ $c_4 \rightarrow A$

A Grammar for Stop Codons

$$s \to c_1$$
 $c_1 \to Uc_2$ $c_2 \to Ac_3$ $c_3 \to A$ $c_4 \to A$ $c_2 \to Gc_4$ $c_3 \to G$

- this grammar can generate the 3 stop codons: UAA, UAG, UGA
- with a grammar we can ask questions like
 - what strings are derivable from the grammar?
 - can a particular string be derived from the grammar?

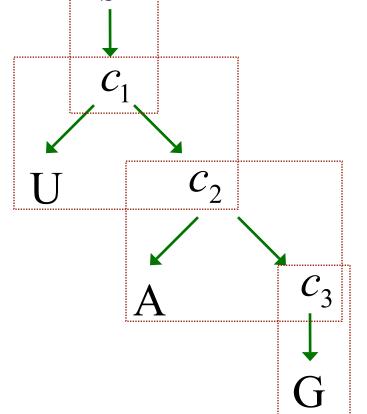
The Derivation for UAG

$$s \to c_1$$
 $c_1 \to Uc_2$ $c_2 \to Ac_3$ $c_3 \to A$ $c_4 \to A$ $c_2 \to Gc_4$ $c_3 \to G$

$$s \Rightarrow c_1 \Rightarrow Uc_2 \Rightarrow UAc_3 \Rightarrow UAG$$

The Parse Tree for UAG

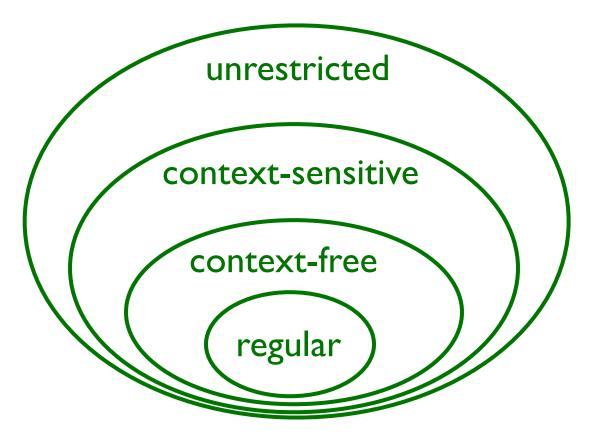
$$s \to c_1$$
 $c_1 \to Uc_2$ $c_2 \to Ac_3$ $c_3 \to A$ $c_4 \to A$ $c_5 \to G$ $c_6 \to G$



A Probabilistic Version of the Grammar

- each production has an associated probability
- the probabilities for productions with the same left-hand side sum to one
- this grammar has a corresponding Markov chain model

The Chomsky Hierarchy



 a hierarchy of grammars defined by restrictions on productions

The Chomsky Hierarchy

- ullet regular grammars u o Xv u o X
- ullet context-free grammars u o eta
- ullet context-sensitive grammars $\alpha_1 u \alpha_2
 ightarrow \alpha_1 eta lpha_2$
- unrestricted grammars $\alpha_1 u \alpha_2 \rightarrow \gamma$
- where:
 - ullet u is a nonterminal
 - \bullet X is a terminal
 - ullet α, γ are any sequence of terminals/nonterminals
 - ullet is any non-null sequence of terminals/nonterminals

CFGs and RNA

- context free grammars are well suited to modeling RNA secondary structure because they can represent base pairing preferences
- a grammar for a 3-base stem with and a loop of either GAAA or GCAA

$$s \rightarrow Aw_1U \mid Cw_1G \mid Gw_1C \mid Uw_1A$$
 $w_1 \rightarrow Aw_2U \mid Cw_2G \mid Gw_2C \mid Uw_2A$
 $w_2 \rightarrow Aw_3U \mid Cw_3G \mid Gw_3C \mid Uw_3A$
 $w_3 \rightarrow GAAA \mid GCAA$

CFGs and RNA

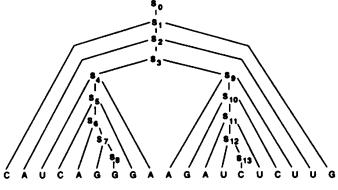
a. Productions

$$P = \{ S_0 \rightarrow S_1, S_7 \rightarrow G S_8, S_1 \rightarrow C S_2 G, S_8 \rightarrow G, S_2 \rightarrow A S_3 U, S_9 \rightarrow A S_{10} U, S_3 \rightarrow S_4 S_9, S_{10} \rightarrow G S_{11} C, S_4 \rightarrow U S_5 A, S_{11} \rightarrow A S_{12} U, S_5 \rightarrow C S_6 G, S_{12} \rightarrow U S_{13}, S_6 \rightarrow A S_7, S_{13} \rightarrow C \}$$

b. Derivation

 $S_0 \Rightarrow S_1 \Rightarrow CS_2G \Rightarrow CAS_3UG \Rightarrow CAS_4S_9UG$ $\Rightarrow CAUS_5AS_9UG \Rightarrow CAUCS_6GAS_9UG$ $\Rightarrow CAUCAS_7GAS_9UG \Rightarrow CAUCAGS_8GAS_9UG$ $\Rightarrow CAUCAGGGAAGS_{11}CUUG$ $\Rightarrow CAUCAGGGAAGS_{12}UCUUG$ $\Rightarrow CAUCAGGGAAGAUS_{13}UCUUG$ $\Rightarrow CAUCAGGGAAGAUCUCUUG$.

c. Parse tree



d. Secondary Structure

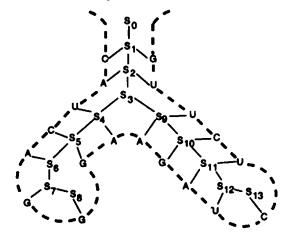
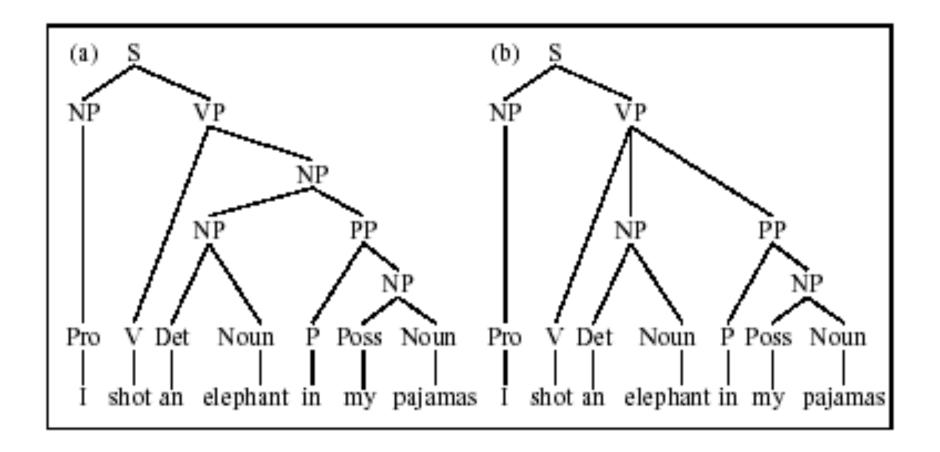


Figure from: Sakakibara et al. Nucleic Acids Research, 1994

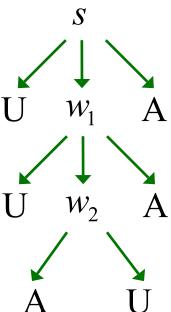
Ambiguity in Parsing

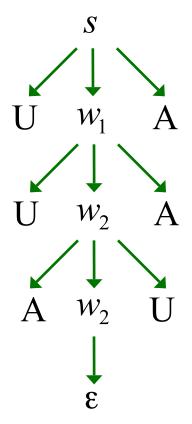
"I shot an elephant in my pajamas. How he got in my pajamas, I'll never know." – Groucho Marx



Ambiguity in Parsing

$$s
ightarrow Aw_1 U \mid Cw_1 G \mid Gw_1 C \mid Uw_1 A$$
 $w_1
ightarrow Aw_2 U \mid Cw_2 G \mid Gw_2 C \mid Uw_2 A$
 $w_2
ightarrow Aw_2 U \mid Cw_2 G \mid Gw_2 C \mid Uw_2 A$
 $w_2
ightarrow AA \mid AU$
 $w_2
ightarrow \epsilon$
denotes the





Thursday, April 10, 2008

empty string

Stochastic Context Free Grammars

Stochastic Grammars?

...the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

Noam Chomsky (famed linguist)

Every time I fire a linguist, the performance of the recognizer improves.

Fred Jelinek(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin, Speech and Language Processing

Three Key Questions

• How likely is a given sequence?

the Inside algorithm

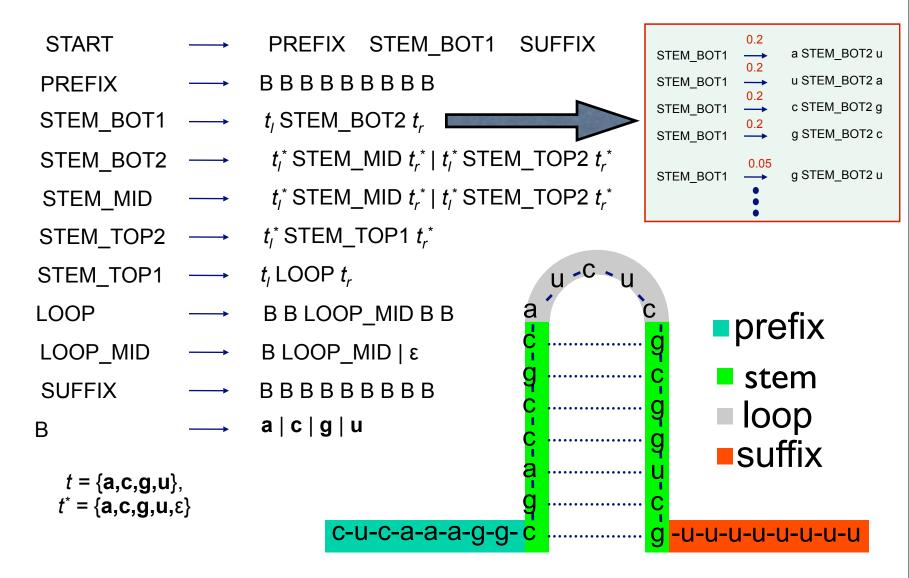
• What is the most probable parse for a given sequence?

the Cocke-Younger-Kasami (CYK) algorithm

 How can we learn the SCFG parameters given a grammar and a set of sequences?

the Inside-Outside algorithm

A Stochastic Context Free Grammar for Terminators



Chomsky Normal Form

• it is convenient to assume that our grammar is in Chomsky Normal Form; i.e all productions are of the form:

$$v
ightarrow yz$$
 right hand side consists of two nonterminals

$$v \to A$$
 right hand side consists of a single terminal

• any CFG can be put into Chomsky Normal Form

Parameter Notation

ullet for productions of the form v
ightarrow yz , we'll denote the associated probability parameters

$$t_{v}(y,z)$$
 transition

ullet for productions of the form v
ightharpoonup A , we'll denote the associated probability parameters

$$e_{v}(A)$$
 emission

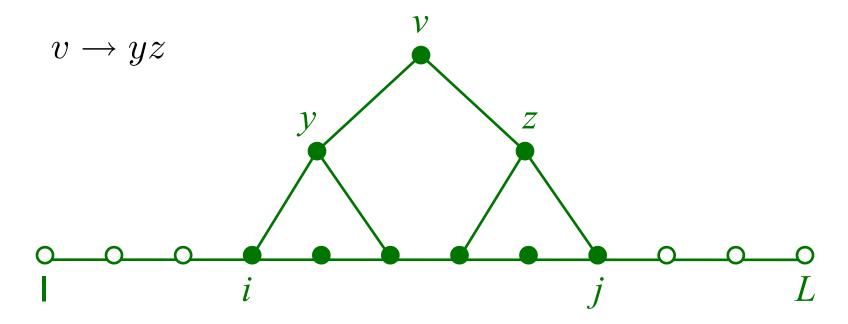
Determining the Likelihood of a Sequence: The Inside Algorithm

- a dynamic programming method, analogous to the Forward algorithm
- involves filling in a 3D matrix

$$\alpha(i,j,v)$$

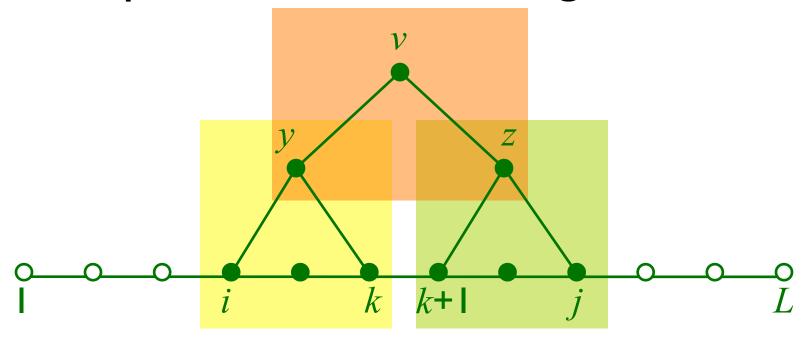
representing the probability of the <u>all</u> parse subtrees rooted at nonterminal v for the subsequence from i to j

Determining the Likelihood of a Sequence: The Inside Algorithm



• $\alpha(i, j, v)$: the probability of all parse subtrees rooted at nonterminal v for the subsequence from i to j

Determining the Likelihood of a Sequence: The Inside Algorithm



$$\alpha(i, j, v) = \sum_{v=1}^{M} \sum_{z=1}^{M} \sum_{k=i}^{j-1} \alpha(i, k, y) \alpha(k+1, j, z) t_{v}(y, z)$$

M is the number of nonterminals in the grammar

Thursday, April 10, 2008 22

The Inside Algorithm

• initialization (for i = 1 to L, v = 1 to M)

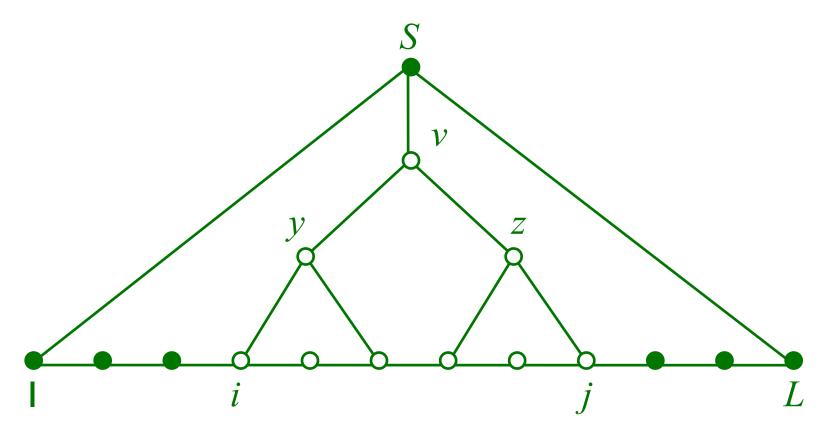
$$\alpha(i,i,v) = e_v(x_i)$$

• iteration (for i = L-1 to 1, j = i+1 to L, v = 1 to M)

$$\alpha(i, j, v) = \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=i}^{j-1} \alpha(i, k, y) \alpha(k+1, j, z) t_{v}(y, z)$$

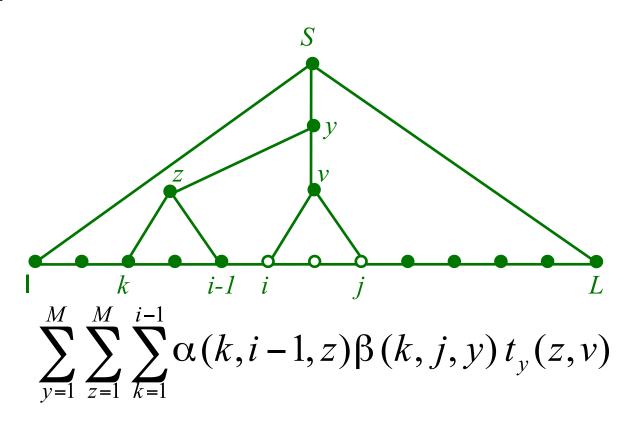
termination

$$Pr(x) = \alpha(1, L, 1)$$
start nonterminal

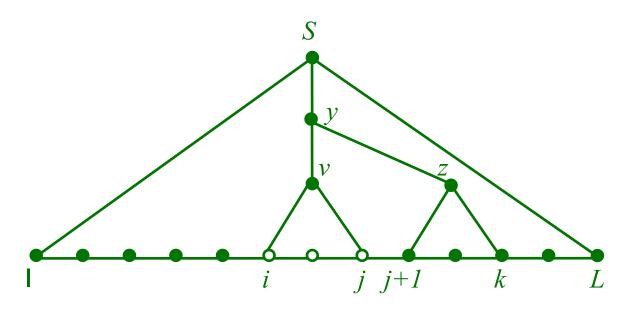


• $\beta(i, j, v)$: the probability of parse trees rooted at the start nonterminal, excluding the probability of all subtrees rooted at nonterminal v covering the subsequence from i to j

- we can recursively calculate $\beta(i,j,v)$ from β values we've calculated for y
- the first case we consider is where v is used in productions of the form: $y \rightarrow zv$



• the second case we consider is where v is used in productions of the form: $y \rightarrow vz$



$$\sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=j+1}^{L} \alpha(j+1,k,z) \beta(i,k,y) t_{y}(v,z)$$

initialization

$$\beta(1, L, 1) = 1$$
 (the *start* nonterminal)
 $\beta(1, L, v) = 0$ for $v = 2$ to M

• iteration (for i = I to L, j = L to i, v = I to M)

$$\beta(i,j,v) = \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=1}^{i-1} \alpha(k,i-1,z) \beta(k,j,y) t_{y}(z,v) +$$

$$\sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=j+1}^{L} \alpha(j+1,k,z) \beta(i,k,y) t_{y}(v,z)$$

Learning SCFG Parameters

- if we know the parse tree for each training sequence, learning the SCFG parameters is simple
 - no hidden state during training
 - count how often each parameter (i.e. production) is used
 - normalize/smooth to get probabilities
 - more commonly, there are many possible parse trees per sequence – we don't know which one is correct
 - thus, use an EM approach (Inside-Outside)
 - iteratively
 - determine expected # times each production is used
 - consider all parses
 - weight each by it's probability
 - set parameters to maximize these counts

The Inside-Outside Algorithm

- we can learn the parameters of an SCFG from training sequences using an EM approach called Inside-Outside
- ullet in the E-step, we determine $\,c(v)\,$
 - the expected number of times each nonterminal is used in parses $c(v \rightarrow yz)$

- \bullet the expected number of times each production is used in parses $\ c(v \to A)$
- in the M-step, we update our production probabilities

The Inside-Outside Algorithm

• the EM re-estimation equations (for I sequence) are:

$$\hat{e}_v(A) = \frac{c(v \to A)}{c(v)} = \frac{\sum\limits_{i \mid x_i = A} \beta(i,i,v) e_v(A)}{\sum\limits_{i = 1}^L \sum\limits_{j = i}^L \beta(i,j,v) \alpha(i,j,v)}$$
 cases where v used to generate A cases where v used to generate any subsequence
$$\hat{t}_v(y,z) = \frac{c(v \to yz)}{c(v)}$$

$$= \frac{\sum\limits_{i = 1}^{L-1} \sum\limits_{j = i+1}^L \sum\limits_{k = i}^{j-1} \beta(i,j,v) t_v(y,z) \alpha(i,k,y) \alpha(k+1,j,z)}{\sum\limits_{i = 1}^L \sum\limits_{j = i}^L \beta(i,j,v) \alpha(i,j,v)}$$

The CYK Algorithm

- analogous to Viterbi algorithm
- like Inside algorithm but
 - max operations instead of sums
 - retain traceback pointers
- traceback is a little more involved than Viterbi
 - need to reconstruct parse tree instead of recovering simple path

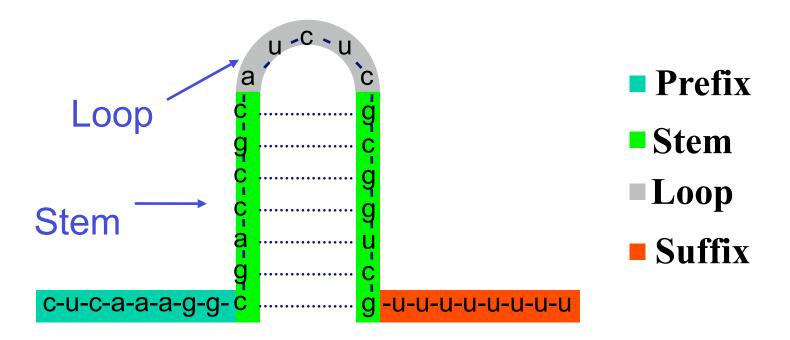
Thursday, April 10, 2008 31

Comparison of SCFG Algorithms to HMM Algorithms

	HMM algorithm	SCFG algorithm
optimal alignment	Viterbi	CYK
probability of sequence	forward	inside
EM parameter estimation	forward-backward	inside-outside
memory complexity	O(LM)	$O(L^2M)$
time complexity	$O(LM^2)$	$O(L^3M^3)$

Recognizing Terminators with SCFGs

[Bockhorst & Craven, IJCAI 2001]



- a prototypical terminator has the structure above
- the lengths and base compositions of the elements can vary a fair amount

Our Initial Terminator Grammar

```
PREFIX STEM_BOT1 SUFFIX
START
PREFIX
                         BBBBBBBB
                         t_{l} STEM_BOT2 t_{r}
STEM BOT1
                         t_{I}^{*} STEM_MID t_{r}^{*} \mid t_{I}^{*} STEM_TOP2 t_{r}^{*}
STEM_BOT2
                         t_{l}^{*} STEM_MID t_{r}^{*} \mid t_{l}^{*} STEM_TOP2 t_{r}^{*}
STEM_MID
                         t_{l}^{*} STEM_TOP1 t_{r}^{*}
STEM TOP2
STEM TOP1
                         t_1 LOOP t_r
                         B B LOOP_MID B B
LOOP
                         B LOOP_MID | E
LOOP_MID
                         BBBBBBBB
SUFFIX
                         a | c | g | u
B
                                                t = \{a,c,g,u\},\
```

Nonterminals are uppercase, terminals are lowercase

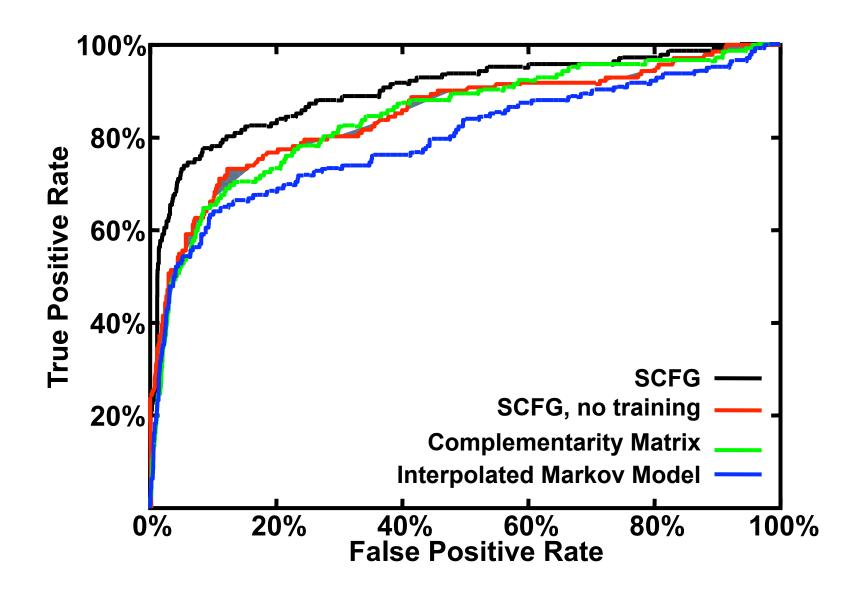
Thursday, April 10, 2008

 $t^* = \{a,c,g,u, \epsilon\}$

Terminator SCFG Experiments

- compare predictive accuracy of
 - SCFG with learned parameters
 - SCFG without learning (but parameters initialized using domain knowledge)
 - interpolated Markov models (IMMs)
 - can represent distribution of bases at each position
 - * cannot easily encode base pair dependencies
 - complementarity matrices
 - Brendel et al., J Biom Struct and Dyn 1986
 - ad hoc way of considering base pairings
 - * cannot favor specific base pairs by position

SCFGs vs. Related Methods



Learning SCFG Structure

- given the productions of a grammar, can learn the probabilities using the Inside-Outside algorithm
- we have developed an algorithm that can add new nonterminals & productions to a grammar during learning [Bockhorst & Craven, IJCAI 01]

- basic idea:
 - identify nonterminals that seem to be "overloaded"
 - split these nonterminals into two; allow each to specialize

Refinement Algorithm Overview

Given:

- set of sequences
- initial grammar structure hypothesis

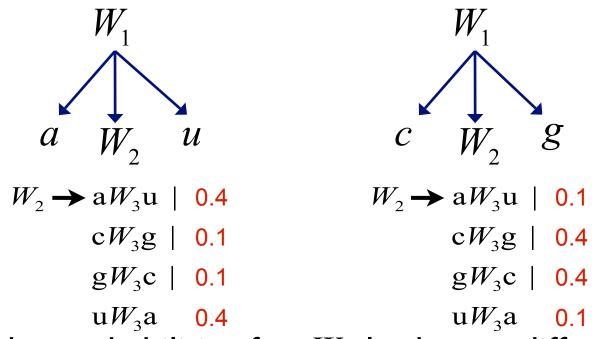
Do:

repeat

- I) find MAP estimates for probabilities
- 2) refine grammar structure
 - 2.1) diagnostically identify overloaded nonterminal
 - 2.2) apply EXPAND operator

Refining the Grammar in a SCFG

- there are various "contexts" in which each grammar nonterminal may be used
- ullet consider two contexts for the nonterminal W_2



• if the probabilities for W_2 look very different, depending on its context, we add a new nonterminal and specialize

Refining the Grammar in a SCFG

ullet we can compare two probability distributions P and Q using Kullback-Leibler divergence

$$H(P||Q) = \sum_{i} P(x_{i}) \log_{2} \frac{P(x_{i})}{Q(x_{i})}$$

$$P \qquad Q$$

$$W_{2} \rightarrow aW_{3}u \mid 0.4 \qquad W_{2} \rightarrow aW_{3}u \mid 0.1$$

$$cW_{3}g \mid 0.1 \qquad cW_{3}g \mid 0.4$$

$$gW_{3}c \mid 0.1 \qquad gW_{3}c \mid 0.4$$

$$uW_{3}a \qquad 0.4$$

• or we can compare expected number of times each production is used (over training set) using χ^2

EXPAND Operator

EXPAND(P,N) /* N on RHS of production P */

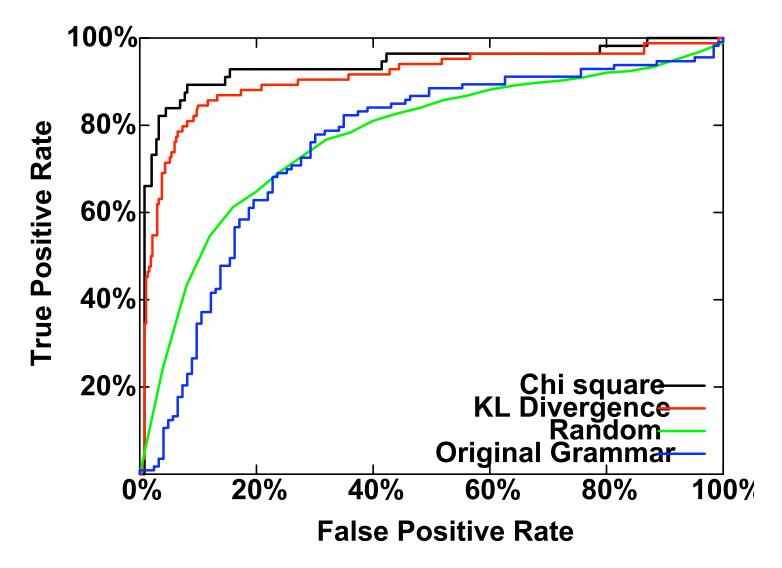
- I) create new nonterminal N'
- 2) replace N with N' in P.
- 3) for each production $N \rightarrow \bullet$, create a production $N' \rightarrow \bullet$

Learning Terminator SCFGs

- extracted grammar from the literature (~ I20 productions)
- data set consists of 142 known $E.\ coli$ terminators, 125 sequences that do not contain terminators
- learn parameters using Inside-Outside algorithm (an EM algorithm)
- consider adding nonterminals guided by three heuristics
 - KL divergence
 - chi-squared
 - random

Thursday, April 10, 2008 42

SCFG Accuracy After Adding 25 New Nonterminals



Thursday, April 10, 2008 43

SCFG Accuracy vs. Nonterminals Added

