BMI/CS 776
Lecture #23 -
Applications of Lightweight Stochastic Context Free Grammars for RNA Analysis

Colin Dewey
April 15, 2008
Recall Nussinov

- Finds structure with maximum number of base pairs
- Recursion has four cases:

SCFG:

\[S \rightarrow aS \mid cS \mid gS \mid uS \]

\[S \rightarrow aS \mid cS \mid gS \mid uS \]

\[S \rightarrow Sa \mid Sc \mid Sg \mid Su \]

\[S \rightarrow SS \]
Nussinov Algorithm

- let \(\delta(i, j) = \begin{cases}
1 & \text{if } x_i \text{ and } x_j \text{ are complementary} \\
0 & \text{otherwise}
\end{cases} \)

- initialization: \(\gamma(i, i-1) = 0 \) for \(i = 2 \) to \(L \)
 \(\gamma(i, i) = 0 \) for \(i = 1 \) to \(L \)

- recursion
 \(\gamma(i, j) = \max \begin{cases}
\gamma(i+1, j) \\
\gamma(i, j-1) \\
\gamma(i+1, j-1) + \delta(i, j) \\
\max_{i<k<j}[\gamma(i, k) + \gamma(k+1, j)]
\end{cases} \)

max # of paired bases in Subsequence \([i, j]\)
Nussinov algorithm \rightarrow CYK

- initialization:
 $$\gamma(i, i - 1) = -\infty \quad \text{for } i = 2 \text{ to } L$$
 $$\gamma(i, i) = \max(\log p(x_i S), \log p(S x_i)) \quad \text{for } i = 1 \text{ to } L$$

- recursion
 $$\gamma(i, j) = \max \left\{ \begin{array}{l}
 \gamma(i + 1, j) + \log p(x_i S) \\
 \gamma(i, j - 1) + \log p(S x_j) \\
 \gamma(i + 1, j - 1) + \log p(x_i S x_j) \\
 \max_{i < k < j} \gamma(i, k) + \gamma(k + 1, j) + \log p(SS) \end{array} \right\}$$

 log probability of most likely structure of subsequence $[i,j]$
Searching Sequence for a Secondary Structure

Given

- a single RNA sequence with its secondary structure
- another RNA query sequence

ACGGCUUCGGCCUUGGCGAGACCC

Determine if the query sequence has “same” secondary structure
Searching Sequence for a Secondary Structure

- this is analogous to pairwise alignment with primary sequences
- we take into account substitutions, insertions/deletions, and base-pair substitutions

ACG GCUU C CGG CCU U GG C G A G A C C

Diagram:

\[
\begin{align*}
\text{A} & \text{G} & \text{A} & \text{G} & \text{U} & \text{C} & \text{A} & \text{G} & \text{G} & \text{G} & \text{G} & \text{C} & \text{C} & \text{C} & \text{C} & \text{A} & \text{C} \\
\text{U} & \text{C} & \text{G} & \text{G} & \text{G} & \text{C} & \text{G} & \text{A} & \text{G} & \text{A} & \text{C} & \text{G} & \text{G} & \text{G} & \text{C} & \text{A} & \text{G} \\
\text{U} & \text{G} & \text{C} & \text{G} & \text{C} & \text{G} & \text{A} & \text{G} & \text{A} & \text{C} & \text{G} & \text{G} & \text{G} & \text{C} & \text{A} & \text{G} & \text{C} \\
\text{G} & \text{C} & \text{G} & \text{A} & \text{G} & \text{A} & \text{C} & \text{G} & \text{G} & \text{G} & \text{C} & \text{A} & \text{G} & \text{C} & \text{G} & \text{A} & \text{G} \\
\end{align*}
\]
The RIBOSUM Matrices [Klein & Eddy]

observed frequency of \(i \) aligned to \(j \) in homologous RNAs

\[
s_{ij} = \log_2 \frac{f_{ij}}{g_i g_j}
\]

background frequency of \(i \)

\[
s'_{ijkl} = \log_2 \frac{f'_{ijkl}}{g_i g_j g_k g_l}
\]

observed frequency of two base pairs \(i-j \) and \(k-l \) aligned to each other in homologous RNAs
Using a Lightweight SCFG to Search for Secondary Structure

given a structure can construct a simple grammar characterizing it can add productions to allow for variation

\[s \rightarrow C_{s_1}G \]
\[s_1 \rightarrow A_{s_2}U \]
\[s_2 \rightarrow b_1l_1 \]
\[l_1 \rightarrow b_1b_2 \]
\[b_1 \rightarrow U \]
\[b_2 \rightarrow U \]
\[b_3 \rightarrow C \]

\[s \rightarrow Us_1A \]
\[s \rightarrow As_1U \]
\[s \rightarrow Gs_1C \]

- base pair substitutions
- insertions
- single base substitutions
Setting the Parameters in the Grammar

- Infer them from the parameters from the RIBOSUM matrices (taking into account the latter are log-odds scores)

\[
\begin{align*}
 s & \rightarrow Cs_1G \\
 s_1 & \rightarrow As_2U \\
 s_2 & \rightarrow b_1l_1 \\
 l_1 & \rightarrow b_1b_2 \\
 b_1 & \rightarrow U \\
 b_2 & \rightarrow U \\
 b_3 & \rightarrow C
\end{align*}
\]
RSEARCH: Searching Sequence for a Secondary Structure

• the RSEARCH algorithm [Klein & Eddy, *BMC Bioinformatics* 2003] implements this idea

• but uses a somewhat different SCFG formulation – covariance models (see section 10.3 in Durbin et al.)

• an RSEARCH case study: finding 6S genes in bacterial genomes
 – used E. coli 6S as the query structure
 – searched 14 other genomes with known 6S genes
 ~ 5,000 intergenic sequences on average
 – the top-scoring RSEARCH hit in all 14 genomes was the known 6S gene
6S RNA Secondary Structure

E. coli

H. influenzae

B. subtilis
Given: a pairwise alignment of homologous sequences

Identify novel RNA genes in the sequences
key idea: the pattern of substitutions in the two sequences provides evidence about the role of the sequence

substitutions tend to be in the 3rd codon (wobble) position

substitutions tend to preserve complementary base pairings

Figure from Rivas & Eddy, *BMC Bioinformatics*, 2001
RNA Gene Detection

- Illustrative examples of emission scores for three models
 (numbers before parens are log-odds with respect to a model of no alignment)

<table>
<thead>
<tr>
<th></th>
<th>$p_{OTH}(\begin{array}{c}G \ G \end{array})$</th>
<th>$p_{OTH}(\begin{array}{c}C \ C \end{array})$</th>
<th>$p_{OTH}(\begin{array}{c}U \ C \end{array})$</th>
<th>$p_{OTH}(\begin{array}{c}A \ U \end{array})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTH</td>
<td>+0.76(-3.20)</td>
<td>+0.72(-3.52)</td>
<td>-0.19(-4.41)</td>
<td>-0.53(-4.45)</td>
</tr>
<tr>
<td>COD</td>
<td>$p_{COD}(\begin{array}{c}A A C \ A A C \end{array})$</td>
<td>$p_{COD}(\begin{array}{c}A A C \ A A U \end{array})$</td>
<td>$p_{COD}(\begin{array}{c}A A C \ A U C \end{array})$</td>
<td>$p_{COD}(\begin{array}{c}A U C \ A G C \end{array})$</td>
</tr>
<tr>
<td></td>
<td>+3.31(-8.19)</td>
<td>+3.31(-8.19)</td>
<td>-0.52(-12.31)</td>
<td>+1.29(-10.95)</td>
</tr>
<tr>
<td>RNA</td>
<td>$p_{RNA}(\begin{array}{c}G \cdots C \ G \cdots C \end{array})$</td>
<td>$p_{RNA}(\begin{array}{c}G \cdots U \ G \cdots C \end{array})$</td>
<td>$p_{RNA}(\begin{array}{c}G \cdots A \ G \cdots A \end{array})$</td>
<td>$p_{RNA}(\begin{array}{c}C \cdots G \ G \cdots G \end{array})$</td>
</tr>
<tr>
<td></td>
<td>+3.81(-4.37)</td>
<td>+1.36(-6.82)</td>
<td>-8.82(-16.42)</td>
<td>+2.43(-5.76)</td>
</tr>
</tbody>
</table>

Figure from Rivas & Eddy, BMC Bioinformatics, 2001
RNA Gene Detection via Comparative Sequence Analysis

- given sequences x and y, want a model that can distinguish
 - homologous RNA subsequences
 - homologous coding subsequences
 - “other” homologous subsequences
 - non-homologous subsequences
- allow these to be interleaved, have gaps
RNA Gene Detection: The IID Model

• models non-homologous sequences, x and y

$\begin{align*}
1-\eta&\quad&1-\eta&\quad&1-\eta
\end{align*}$

emits a base in sequence x

denotes an IID submodel

emits a base in sequence y

• S, K and T are silent states

Figure from Rivas & Eddy, *BMC Bioinformatics*, 2001
RNA Gene Detection: The “Other” Homologous Sequence Model

F_L, F_J and F_R are IID submodels

Figure from Rivas & Eddy, *BMC Bioinformatics*, 2001
RNA Gene Detection: The Coding Sequence Model

Figure from Rivas & Eddy, *BMC Bioinformatics*, 2001

- **O_B**, **O_J** and **O_E** are “other” submodels
- **C_B** emits a codon in x only
- **C_E** emits codons in x and y
- **O_J** emits a codon in y only
RNA Gene Detection: The RNA Model

O_B, O_J and O_E are “other” submodels

- here, the RNA box is a “lightweight” pairwise SCFG

Figure from Rivas & Eddy, *BMC Bioinformatics*, 2001
Summary of RNA Analysis Tasks

• given a sequence, predict its secondary structure
• given a set of related RNA sequences, construct a model of the set
 • parameter learning (Inside-Outside)
 • structure refinement
• given a model of an RNA class, find sequences that belong to the class (Inside or CYK)
• given a sequence/structure, find other sequences with similar structure
• given a pair of related genomic sequences, find subsequences that seem have similar secondary structure (RNA gene finding)