Network problems

- Network inference
 - Given raw experimental data
 - Infer network structure
- Motif finding
 - Identify common subgraph topologies
- Module detection
 - Identify subgraphs that perform same function
- Conserved modules
 - Identify modules that are shared in networks of multiple species
Network motifs

- Problem: Find subgraph topologies that are statistically more frequent than expected
- Brute force approach
 - Count all topologies of subgraphs of size m
 - Randomize graph (retain degree distribution) and count again
 - Output topologies that are over/under represented

Feed-forward loop: over-represented in regulatory networks

not very common
Network modules

• Modules: dense (highly-connected) subgraphs (e.g., large cliques or partially incomplete cliques)

• Problem: Identify the component modules of a network

• Difficulty: definition of module is not precise
 • Hierarchical networks have modules at multiple scales
 • At what scale to define modules?
Conserved modules

- Identify *modules* in multiple species that have “conserved” topology

- Use sequence alignment to identify homologous proteins and establish correspondence between networks

- Using correspondence, output subsets of nodes with similar topology
Comparative network analysis

• Compare networks from different...
 • interaction detection methods
 • yeast 2-hybrid, mass spectrometry, etc.
 • conditions
 • heat, media, other stresses
 • time points
 • development, cell cycle
 • species
Comparative tasks

- Integration
 - Combine networks derived from different methods (e.g. experimental data types)

- Alignment
 - Identify nodes, edges, modules common to two networks (e.g., from different species)

- Database query
 - Identify subnetworks similar to query in database of networks
Conserved interactions

- Network comparison between species also requires sequence comparison
- Protein sets compared to identify orthologs
- Common technique: highest scoring BLAST hits used for establishing correspondences
Conserved modules

- Conserved module: orthologous subnetwork with significantly similar edge presence/absence
Network alignment graph

• Analogous to pairwise sequence alignment
Conserved module detection

<table>
<thead>
<tr>
<th>Biological networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species 1 (Condition/type 1)</td>
</tr>
<tr>
<td>Species 2 (Condition/type 2)</td>
</tr>
</tbody>
</table>

- **Matched proteins**
 - Match protein pairs that are sequence-similar
 - Protein sequences: PKSDIDVDLCSELMAKACSE-GV
 - PKS +D+DLSEL+ KAC++ + PKSSLIDDLCSELIIKACTDCKI

- **Network alignment**
 - Conserved interactions
 - Matched protein pairs

- **High-scoring conserved subnetworks**

- **Search algorithm**

(Sharan & Ideker, 2006)
Real module example

Module for RNA metabolism (Sharan et al., 2005)

- Yeast
- Worm
- Fly

- Note: a protein may have more than one ortholog in another network
Basic alignment strategy

• Define scoring function on subnetworks
 • high score \(\Rightarrow\) conserved module

• Use BLAST to infer orthologous proteins

• Identify “seeds” around each protein: small conserved subnetworks centered around the protein

• Grow seeds by adding proteins that increase alignment score
Subnetwork modeling

• We wish to calculate the likelihood of a certain subnetwork U under different models

• Subnetwork model (M_s)
 • Connectivity of U given by target graph H, each edge in H appearing in U with probability β (large)

• Null model (M_n)
 • Each edge appears with probability according to random graph distribution (but with degree distribution fixed)

(Sharan et al., 2005)
Noisy observations

• Typically weight edges in graph according to confidence in interaction (expressed as a probability)

• Let

 • T_{uv}: event that proteins u, v interact
 • F_{uv}: event that proteins u, v do not interact
 • O_{uv}: observations of possible interactions between proteins u and v
Subnetwork model probability

- Assume (for explanatory purposes) that subnetwork model is a clique:

\[
Pr(O_U|M_s) = \prod_{(u,v) \in U \times U} Pr(O_{uv}|M_s)
\]

\[
= \prod_{(u,v) \in U \times U} \left[Pr(O_{uv}|T_{uv}, M_s)Pr(T_{uv}|M_s) + Pr(O_{uv}|F_{uv}, M_s)Pr(F_{uv}|M_s) \right]
\]

\[
= \prod_{(u,v) \in U \times U} \left[\beta Pr(O_{uv}|T_{uv}) + (1 - \beta) Pr(O_{uv}|F_{uv}) \right]
\]
Null model probability

• Given values for p_{uv}: probability of edge (u,v) in random graph with same degrees

$$Pr(O_U|M_n) = \prod_{(u,v)\in U\times U} [p_{uv}Pr(O_{uv}|T_{uv}) + (1 - p_{uv})Pr(O_{uv}|F_{uv})]$$

• How to get random graph if we don’t know true degree distribution? Estimate them:

$$d_i = \sum_j Pr(T_{ij}|O_{ij})$$

$$Pr(T_{uv}|O_{uv}) = \frac{Pr(O_{uv}|T_{uv})Pr(T_{uv})}{Pr(O_{uv}|T_{uv})Pr(T_{uv}) + Pr(O_{uv}|F_{uv})(1 - Pr(T_{uv}))}$$
Likelihood ratio

• Score subnetwork with (log) ratio of likelihoods under the two models

\[L(U) = \log \frac{Pr(O_U|M_s)}{Pr(O_U|M_n)} \]

\[= \sum_{(u,v) \in U \times U} \log \frac{\beta Pr(O_{uv}|T_{uv}) + (1 - \beta) Pr(O_{uv}|F_{uv})}{p_{uv} Pr(O_{uv}|T_{uv}) + (1 - p_{uv}) Pr(O_{uv}|F_{uv})} \]

• Note the decomposition into sum of scores for each edge
Seed construction

• Finding “heavy induced subgraphs” is NP-hard (Sharan et al, 2004)

• Heuristic:
 • Find high-scoring subgraph “seeds”
 • Grow seeds greedily

• Seed techniques: for each node v:
 • Find heavy subgraph of size 4 including v
 • Find highest-scoring length 4 path with v
Randomizing graphs

- For statistical tests, need to keep degree distribution the same
- Shuffle step:
 - Choose two edges \((a, b), (c, d)\) in the current graph
 - Remove those edges
 - Add edges \((a, d), (c, b)\)
Predictions from alignments

- Conserved modules of proteins enriched for certain functions often indicate shared function of other proteins

- Use to predict function of unannotated proteins

- Sharan et al., 2005: annotated 4,645 proteins with estimated accuracy of 58-63%

- Predict missing interactions

- Sharan et al., 2005: 2,609 predicted interactions in fly, 40–52% accurate
Parallels to sequence analysis

(Biological sequence comparison)

- 1960: First protein sequences by Sanger, others
- 1970: Dayhoff, Jukes/Cantor, Needleman/Wunsch
- 1980: PAM, BLOSUM, Smith/Waterman, Swiss-Prot, GenBank, EMBL-Bank, Stormo
- 1990: Haussler, Borodovsky, Church, Taylor, Lipman, others, BLAST

(A new type of data becomes routinely available)

- Mathematical models of evolution
- Scoring via transition probabilities
- Public genome-scale databases
- Mining for motifs and domains
- Hidden Markov models
- Database queries are staple of molecular biology

(Biological network comparison)

- 1990: Interaction detection with two-hybrid mass spec.
- 2001: Interologs: evolutionary models
- 2002: MaWish
- 2003: BIND, DIP, MINT, GRID
- 2004: Path BLAST
- 2005: Scale-free property; robustness
- 2010?: Sharan/Karp/Ideker

(Sharan & Ideker, 2006)