BMI/CS 776
Lecture 28
Discriminative sequence methods

Colin Dewey
May 1, 2008
Some sequence tasks

<table>
<thead>
<tr>
<th>x (observed)</th>
<th>y (hidden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiple sequences</td>
<td>motif locations</td>
</tr>
<tr>
<td>single DNA sequence</td>
<td>gene parse</td>
</tr>
<tr>
<td>single RNA sequence</td>
<td>secondary structure</td>
</tr>
<tr>
<td>multiple sequences</td>
<td>alignment</td>
</tr>
</tbody>
</table>
Generative models

• All models we’ve seen thus far model the joint probability $P(x,y|\theta)$

• Modeled as $P(x,y|\theta) = P(x|y,\theta)P(y|\theta)$

• Given x, generative models generally predict y by finding the \hat{y} such that $P(x, \hat{y}|\theta)$ is maximized

• Example (gene finding):
 • DNA sequence (x), gene parse (y), semi-HMM transition & emission probabilities (θ)
Tradeoffs of generative models

• Advantages:
 • Parameters are often easily interpretable
 • Can be used to simulate (generate) data

• Disadvantages:
 • Models too much: don’t need to model x if all we want to do is predict y
 • Restricted in the features that can be used
Discriminative models

• Only model conditional probability of y given x: $P(y|x, \theta)$

• Train to maximize conditional likelihood, not joint likelihood

• Often has better predictive power than generative models
SCFGs for RNA

• For RNA sequence (x), parameters (θ), and parse σ, a SCFG gives \(P(x, σ | θ) \)

• We would like to determine the structure (y) of the RNA, which, in general, may correspond to multiple parses

• To find the probability of a structure (y) given the sequence (x), we must sum over all parses that give that structure

\[
P(y|x, θ) = \sum_{σ ∈ y} P(σ|x, θ) = \frac{\sum_{σ ∈ y} P(σ, x|θ)}{\sum_{σ ∈ Ω(x)} P(σ, x|θ)}
\]

all possible parses of x
SCFG Training

• Given training data:
 \[D = \{ (x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \} \]

• Find \(\theta \) to maximize joint likelihood

\[
P(D|\theta) = \prod_{i=1}^{m} P(x^{(i)}, y^{(i)}|\theta)
\]

• Easily computed for unambiguous grammars (just count transitions and emissions)
SCFG log-linear form

- We can transform the joint likelihood to log-linear form:

\[
P(x, \sigma | \theta) = \prod_{i=1}^{n} p_i^{F_i(x, \sigma)}\]

\[
= \exp \left(\ln \left(\prod_{i=1}^{n} p_i^{F_i(x, \sigma)} \right) \right)\]

\[
= \exp \left(\sum_{i=1}^{n} F_i(x, \sigma) \ln p_i \right)\]

\[
= \exp (w^T F(x, \sigma))\]

where \(w_i = \ln p_i \)
Using the log linear form of SCFG joint likelihood, we can express the conditional likelihood in the form of a conditional log-linear model:

\[P(y|x, \theta) = \frac{\sum_{\sigma \in y} \exp(w^T F(x, \sigma))}{\sum_{\sigma \in \Omega(x)} \exp(w^T F(x, \sigma))} = \frac{1}{Z_w(x)} \sum_{\sigma \in y} \exp(w^T F(x, \sigma)) \]
Conditional log-linear models

\[
P(y|x, \theta) = \frac{1}{Z_w(x)} \sum_{\sigma \in y} \exp(w^T F(x, \sigma))
\]

• For general CLLMs, weights \(w \) and features \(F \) can be arbitrary

• SCFGs are CLLMs where
 • \(w \) is a vector of log probabilities
 • \(F \) features are counts of productions
CLLM parameter estimation

• For generative models, we find the parameters that maximize the joint likelihood

• For discriminative models, we can instead find the parameters that maximize the conditional likelihood

\[P(y|x, w) = \prod_{i=1}^{m} P(y^{(i)}|x^{(i)}, w) = \prod_{i=1}^{m} \frac{1}{Z_w(x^{(i)})} \exp(w^T F(y^{(i)}, x^{(i)})) \]
Improved Iterative Scaling (IIS)

- Gradient of conditional likelihood
 \[\nabla_w P(y|x, w) = \sum_{i=1}^{m} \left(F(x^{(i)}, y^{(i)}) - \mathbb{E}_{y' \sim P(y|x^{(i)}, w)}[F(x^{(i)}, y')] \right) \]

- Maximum reached when expected feature counts equal the observed feature counts!
- One algorithm for climbing to maximum is improved iterative scaling (IIS)
- Similar to the EM algorithm, except that we don’t have missing data
CONTRAfold

- Do et al., 2006
- Reformulate SCFG as CLLM for secondary structure prediction of single RNAs
- Add features not easily captured by SCFG, but that have thermodynamic analogs
- Use maximum expected accuracy parse for secondary structure
- Turns out you can do better than both SCFGs and thermodynamic models!
CONTRAfold features

• Allows for features and weighting not captured by SCFG

• However, features must still be easily calculated through inside-outside form of dynamic programming (e.g. pseudoknots still difficult)

\[
\begin{align*}
\mathbf{w}^T \mathbf{F}(x, \sigma) &= \begin{bmatrix}
 w_{\text{hairpin length} \ [0]} \\
 w_{\text{hairpin length} \ [1]} \\
 w_{\text{hairpin length} \ [2]} \\
 \vdots
\end{bmatrix}^T \\
 &\begin{bmatrix}
 \# \text{ of hairpins in } \sigma \text{ of length } 0 \\
 \# \text{ of hairpins in } \sigma \text{ of length } 1 \\
 \# \text{ of hairpins in } \sigma \text{ of length } 2 \\
 \vdots
 \end{bmatrix}
\end{align*}
\]
MEA parsing

• Define accuracy with respect to true structure y

$$\text{accuracy}_\gamma(\hat{y}, y) = \# \text{ correctly unpaired positions in } \hat{y} + \gamma \# \text{ correctly paired positions in } \hat{y}$$

• Find structure with maximum expected accuracy

$$\hat{y}_{\text{mea}} = \arg \max_{\hat{y}} \mathbb{E}_y [\text{accuracy}_\gamma(\hat{y}, y)]$$

• Can be determined using Nussinov style algorithm after calculating conditional probabilities of x_i pairing with x_j
Generative vs. Discriminative

- Performance of SCFG models converted to CLLM (without adding additional features)

Table 1. Comparison of generative and discriminative model structure prediction accuracy.

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Generative</th>
<th>Discriminative</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>0.0392</td>
<td>0.2713</td>
<td>+0.2321</td>
</tr>
<tr>
<td>G2</td>
<td>0.3640</td>
<td>0.5797</td>
<td>+0.2157</td>
</tr>
<tr>
<td>G3</td>
<td>0.4190</td>
<td>0.4159</td>
<td>−0.0031</td>
</tr>
<tr>
<td>G4</td>
<td>0.1361</td>
<td>0.1350</td>
<td>−0.0011</td>
</tr>
<tr>
<td>G5</td>
<td>0.0026</td>
<td>0.0031</td>
<td>+0.0005</td>
</tr>
<tr>
<td>G6</td>
<td>0.5446</td>
<td>0.5600</td>
<td>+0.0154</td>
</tr>
<tr>
<td>G7</td>
<td>0.5456</td>
<td>0.5582</td>
<td>+0.0126</td>
</tr>
<tr>
<td>G8</td>
<td>0.5464</td>
<td>0.5515</td>
<td>+0.0051</td>
</tr>
<tr>
<td>G6s</td>
<td>0.5501</td>
<td>0.5642</td>
<td>+0.0141</td>
</tr>
</tbody>
</table>

Each number in the table represents the area under the ROC curve of an MEA-based parser using the indicated model. As seen below, the discriminative model consistently outperforms its generative counterpart.

Do et al., 2006
CONTRAfold performance

- Parameter gamma controls sensitivity/specificity tradeoff for CONTRAfold
- CONTRAfold dominates all other single-sequence methods

Do et al., 2006
Feature importance

- Removed features, analyzed decrease in area under ROC curve

<table>
<thead>
<tr>
<th>Variant</th>
<th>ROC area</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRAfold</td>
<td>0.6433</td>
<td>n/a</td>
</tr>
<tr>
<td>(without single base stacking)</td>
<td>0.6416</td>
<td>0.0017</td>
</tr>
<tr>
<td>(without helix lengths)</td>
<td>0.6370</td>
<td>0.0063</td>
</tr>
<tr>
<td>(without terminal mismatch penalties)</td>
<td>0.6362</td>
<td>0.0071</td>
</tr>
<tr>
<td>(without full internal loop table)</td>
<td>0.6336</td>
<td>0.0097</td>
</tr>
<tr>
<td>(without helix stacking)</td>
<td>0.6276</td>
<td>0.0157</td>
</tr>
<tr>
<td>(without outer)</td>
<td>0.6271</td>
<td>0.0162</td>
</tr>
<tr>
<td>(without internal loop asymmetry)</td>
<td>0.6134</td>
<td>0.0299</td>
</tr>
<tr>
<td>(without all of the above)</td>
<td>0.6003</td>
<td>0.0430</td>
</tr>
</tbody>
</table>

Table 5. Abrasion analysis of CONTRAfold model

Do et al., 2006
Discriminative learning for gene prediction

- Bernal et al., March 2007
- CRAIG: Discriminative gene model with semi-Markov structure
- Flexible features
- Online training algorithm
- Shows improvement over HMM models, particularly in specificity & whole gene accuracy
CRAIG Scoring

Score of parse: \(S_w(x, s) = \sum_{j=1}^{Q} w \cdot f(s_j, \text{lab}(s_{j-1}), x) \)

want to find:

\[\hat{s} = \arg \max_{s \in \text{GEN}(x)} S_w(x, s) \]

Bernal et al., 2006
CRAIG Viterbi

\[M(i, y) = \max_{s \in \text{GEN}_{i,y}(x)} S_{w}(x, s) \]

all segmentations of \(x_i \ldots x_i\) ending in segment with label \(y\)

\[
M(i, y) = \begin{cases}
\max_{y', 1 \leq l \leq \min\{i, B\}} M(i - l, y') + & \text{if } i > 0 \\
\omega \cdot f(\langle i - l, l, y \rangle, y', x) & \text{if } i = 0 \\
-\infty & \text{otherwise}
\end{cases}
\]

\[S_{w}(x, \hat{s}) = M(P + 1, \text{END}) \]

Bernal et al., 2006