Outline

- Evolution on trees
- Markov chains
- Poisson processes
- Substitution matrices
Modeling evolution on trees - goals

• Given sequence data, we would like to:
 • Compare different tree topologies
 • Predict evolutionary scenarios
 • Reconstruct ancestral sequences
 • Identify mutation events
 • Estimate mutation rates
Modeling evolution on trees - methods

- Statistical methods
 - Continuous time Markov model
 - Poisson processes
 - Maximum likelihood
 - Tree graphical models
Statistical goal

- Given X, a set of homologous nucleotide characters, we wish to model the generation of these characters on a tree

$$\mathbb{P}(X|T)$$
Form of the models

\[\pi_A, \pi_C, \pi_G, \pi_T \]

root distribution

branch lengths

\[\ell_1, \ell_2, \ell_3, \ell_4, \ell_5, \ell_6 \]

\[\mathbb{P}(A|\ell_1, \ldots) \]

probability of substitution along each edge

\[\ell_1, \ell_2, \ell_3, \ell_4, \ell_5, \ell_6 \]

\[A, A, A, A, C \]
Simple case

\(X_r: \) character state at root

\(X_l: \) character state at leaf

\[
\Pr[X_r = x_r, X_l = x_l] = \Pr[X_r = x_r] \Pr[X_l = x_l | X_r = x_r] \\
= \pi_{x_r} \Pr_{x_r, x_l}
\]

\[
\Pr[X_r, X_l] = \Pi \Pr
\]
Markov chains

\[P[X_n = x | X_{n-1} = x_{n-1}, X_{n-2} = x_{n-2}, \ldots, X_0 = x_0] = P[X_n = x | X_{n-1} = x_{n-1}] \]

\[x \in \Sigma: \text{the state space} \]

\[P_{x,y} := P[X_{i+1} = y | X_i = x] \]

\[P^{(n)}_{x,y} = P[X_{i+n} = y | X_i = x] \]
Continuous time Markov process

Definition A continuous time Markov process is a sequence of Σ-valued random variable $\{Y_t, t \geq 0\}$ satisfying:

$$
P[Y_{t+s} = j|Y_t = i, Y_u = x_u, u \in [0, t)] = P[Y_{t+s} = j|Y_t = i] \quad (3.9)$$

for all $i, j \in \Sigma$ and $s, t > 0$.
Counting process

Definition (Counting process) A counting process is a sequence of random variables \(\{X_t, t \in \mathbb{R}^+ \cup \{0\}\} \) which satisfies:

1. \(X_t \) takes on values in \(\mathbb{Z}^+ \cup \{0\} \) for all \(t \),
2. \(X(s) \leq X(t) \) for \(s < t \),
3. \(\mathbb{E}[X_t] < \infty \),
4. \(X(t) - \lim_{h \to 0^+} X(t - h) \) is either 0 or 1.
Poisson process (Def 1)

Definition (Definition 1) A Poisson process with rate $\lambda \in \mathbb{R}^+$ is a counting process $\{X_t, t \geq 0\}$ satisfying:

1. For all $t_0 = 0 < t_1 < \cdots < t_n$, the differences $X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}$ are independent random variables.

2. For all $s, t, u \geq 0$, $X_{s+t} - X_s \sim X_{u+t} - X_u$.

3. $\mathbb{P}[X_h = 1] = \lambda h + o(h)$, $\mathbb{P}[X_h \geq 2] = o(h)$.

4. $\mathbb{P}[X_0 = 0] = 1$.
Poisson distribution

\[\mathbb{P}[X = k] = \frac{e^{-\lambda} \lambda^k}{k!} \]

\(\lambda > 0 \)

\(k = 0, 1, 2, \ldots \)

Limiting version of binomial distribution with
\(n \) large, \(p \) small, and \(np = \lambda \)
Taylor series for e

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \ldots = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

converges for all x
Poisson process (Def II)

Definition (Definition 2) A Poisson process with rate $\lambda \in \mathbb{R}^+$ is a counting process $\{X_t, t \geq 0\}$ satisfying:

1. For all $t_0 = 0 < t_1 < \cdots < t_n$, the differences $X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}$ are independent random variables.

2. For all $s, t \geq 0$, $X_{s+t} - X_s \sim \text{Poisson}(\lambda t)$.

3. $\mathbb{P}[X_0 = 0] = 1$.
Poisson process (Def III)

Definition (Definition 3) A Poisson process with rate $\lambda \in \mathbb{R}^+$ is a counting process $\{X_t, t \geq 0\}$ satisfying:

1. For all $t_0 = 0 < t_1 < \cdots < t_n$, the differences $X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}$ are independent random variables.

2. For all $s, t \geq 0$, $\mathbb{P}[X_{s+t} - X_s = 0] = e^{-\lambda t}$.

3. $\mathbb{P}[X_0 = 0] = 1$.
Poisson \rightarrow \text{Continuous time Markov process}

- State transition at each Poisson event
- Transition according to an event substitution probability matrix, R

X_t: number of events by time t

$\mathbb{P}[X_t = k] = \frac{e^{-\lambda t} (\lambda t)^k}{k!}$

$R = \begin{pmatrix}
 r_{AA} & r_{AC} & r_{AG} & r_{AT} \\
 r_{CA} & r_{CC} & r_{CG} & r_{CT} \\
 r_{GA} & r_{GC} & r_{GG} & r_{GT} \\
 r_{TA} & r_{TC} & r_{TG} & r_{TT}
\end{pmatrix}$

$\sum_j r_{ij} = 1$
Matrix exponentiation

For a square matrix, A

$$e^A := \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Exercise
Show that

1. $e^{cI} = e^c I$ for any $c \in \mathbb{R}$.
2. $e^{A+B} = e^A e^B$ if A and B commute.
3. $\det(e^A) = e^{\text{trace}(A)}$.
4. If A is invertible then $e^{ABA^{-1}} = Ae^B A^{-1}$.
Substitution matrix derivation

\[
P(t) = \sum_{k=0}^{\infty} R^k \mathbb{P}[X_t = k]
\]

\[
= \sum_{k=0}^{\infty} R^k \frac{(\lambda t)^k e^{-\lambda t}}{k!}
\]

\[
= e^{-\lambda t} \sum_{k=0}^{\infty} R^k \frac{(\lambda t)^k}{k!}
\]

\[
= e^{(-I)\lambda t} \sum_{k=0}^{\infty} \frac{(R\lambda t)^k}{k!}
\]

\[
= e^{(-I)\lambda t} e^{R\lambda t} = e^{Q\lambda t} \quad Q = R - I,
\]
Rate matrix: Q

The matrix $Q = R - I$ satisfies

$$q_{ij} \geq 0 \quad \text{for} \quad i \neq j,$$

$$\sum_{j \in \Sigma} q_{ij} = 0 \quad \text{for all} \quad i \in \Sigma,$$

$$q_{ii} < 0 \quad \text{for all} \quad i \in \Sigma.$$
Substitution matrix \rightarrow

Continuous time Markov process

\[P_{ij}(t) = \mathbb{P}[Y_t = j | Y_0 = i] \]

Probability that nucleotide has changed from character i to character j in time t.

- Hides “silent” events of two types:
 - perfect copies (e.g., $A \rightarrow A$)
 - back mutation (e.g., $A \rightarrow C \rightarrow A$)