Module Networks

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Mark Craven
craven@biostat.wisc.edu
Spring 2009

Bayesian Networks

 $B \qquad P(A,B,C,D,E) = P(A)P(B)P(C \mid A,B)P(D \mid A)P(E \mid C)$

Figure from Friedman, Science, 303:799 – 805, 2004.

Bayesian Networks

- a BN is a Directed Acyclic Graph (DAG) in which
 - the nodes denote random variables
 - each node X has a *conditional probability distribution* (CPD) representing P(X | Parents(X))
- the intuitive meaning of an arc from *X* to *Y* is that *X* directly influences *Y*
- formally: each variable *X* is independent of its nondescendants given its parents
- a BN provides a *factored* representation of the joint probability distribution

Representing CPDs for Discrete Variables

- CPDs can be represented using tables or trees
- consider the following case with Boolean variables A, B, C, D

Pr(D | A, B, C)

A	В	C	Т	F
Т	Т	Т	0.9	0.1
Т	Т	F	0.9	0.1
Т	F	Т	0.9	0.1
Т	F	F	0.9	0.1
F	Т	Т	0.8	0.2
F	Т	F	0.5	0.5
F	F	Т	0.5	0.5
F	F	F	0.5	0.5

Representing CPDs for Continuous Variables

- we can also model the distribution of continuous variables in Bayesian networks
- one approach: linear Gaussian models

$$\Pr(X \mid u_1, ..., u_k) \sim N(a_0 + \sum a_i \times u_i, \sigma^2)$$

• X normally distributed around a mean that depends linearly on values of its parents u_i

BN Architectures

unconstrained acyclic network

\(\text{VLR343W} \) \(\text{VLR345W} \) \(\text{

two-level network: parents must be from a defined set

module network

Figure from Friedman, Science, 303:799 - 805, 2004.

Module Networks Motivation

- sets of variables often have the same behavior
- · consider this simple stock example

Figure from Segal et al., UAI, 2003.

 we can group variables into modules, have the members of a module share the same CPD

Module Networks

- a module network is defined by
 - a specified number of modules
 - an assignment of each variable to a module
 - a shared CPD for the variables in each module
- the learning task thus entails*
 - determining the assignment of variables to modules
 - inducing a CPD for each module

^{*}assuming we're given the number of modules

Module Networks: Identifying Regulatory Modules and their Condition-Specific Regulators from Gene Expression Data. E. Segal et al., *Nature Genetics* 34(2):166-176, 2003

- given:
 - gene expression data set
- their method identifies:
 - sets of genes that are co-expressed (assignment to modules)
 - a "program" that explains expression profile for each set of genes (CPD for each module)

• suppose we have a set of (8) genes that all have in their upstream regions the same activator/repressor binding sites

Regulation Programs as CPDs

- each of these regulation programs is actually a CPD represented using a tree
 - internal nodes are tests on continuous variables

 leaves contain conditional distributions for the genes in the module, represented by Gaussians

The Respiration and Carbon Module

Tree CPDs in Gene Module Networks

• the parents of each module can be other modules

• in this study, Segal et al. limit parents to a set of candidate regulator genes (genes known to be transcription factors and signaling components)

Module Network Learning Procedure

given: expression profile for each gene, set of candidate regulator genes

initialize module assignments by clustering expression profiles repeat until convergence

structure search step:

for each module learn a CPD tree using splits on candidate regulators

module assignment step:

repeat until convergence
for each gene
find the module that best explains it
move the gene to this module
update Gaussians at leaves

Structure Search Step

- the method for the *structure search* step is very similar to the general decision-tree procedure
 - splits are on genes in the candidate regulator set
 - leaves represent distributions over continuous values
- the name for this step is somewhat misleading
 - it does involve learning structure selecting parents for variables in the module
 - it also involves learning the parameters of the Gaussians at the leaves
 - the *module assignment* step heavily influences the structure

Module Assignment Step

- Can we independently assign each variable to its best module?
 - No we might get cycles in the graph.
 - the score for a module depends on all of the genes in the module
- therefore we use a sequential update method (moving one gene at a time)
 - can ensure that each change is a legal assignment that improves the score

Module Assignment Step

• suppose we have the current (partial) structure, and we independently re-assign X_i to Module i and X_2 to Module j

then we have a cycle

Module Assignment Step

• in order to decide a candidate re-assignment, we need a valid structure

$$score(S, A : D) = P(A)P(S \mid A)P(D \mid S, A)$$

S: the dependency structure

A: the assignment of genes to modules

D: the data (gene expression observations)

- reassign gene to another module if doing so improves score
- we can efficiently score local changes because the scoring function is modular

$$score(S, A : D) = \sum_{j} score_{M_{j}}(Pa_{M_{j}}, A_{M_{j}} : D)$$

Empirical Evaluation

- many modules are enriched for
 - binding sites for associated regulators
 - common gene annotations

Global View of Modules

- modules for common processes often share common
 - regulators
 - binding site motifs
 - Module (number)
 Regulator (signaling molecule)
 Regulator (transcription factor)
 Inferred regulation
 Regulation supported in literature
 Enriched cis-regulatory motif
 Experimentally tested regulator

Comments on Module Networks

- module networks exploit the fact that many variables (genes) are determined by the same set of variables
- this application exploits the fact that we may have background knowledge about the variables that can be parents of others (the candidate regulators)
- the learning procedure is like EM, but <u>hard</u> decisions are made (each gene is completely assigned to a module)