Goals for Lecture

the key concepts to understand are the following

• the large-scale multiple-alignment task
• progressive alignment
• breakpoint identification
• undirected graphical models
• minimal spanning trees/forests
Multiple Whole Genome Alignment: Task Definition

Given
- a set of $n > 2$ genomes (or other large-scale sequences)
- a method for scoring the similarity of a pair of characters

Do
- construct global alignment: identify matches between genomes as well as various non-match features

The MLAGAN Method
[Brudno et al., Genome Research, 2003]

Given: k genomes X_1, \ldots, X_k, guide tree T
for each pair of genomes X_i, X_j

$\text{anchors}(i, j) = \text{find}_\text{anchors}(X_i, X_j)$
$\text{align} = \text{progressive}_\text{alignment}(T, \text{anchors})$
for each genome X_i

// iterative refinement
$\text{anchors} = \text{segments of } X_i \text{ with high scores in } \text{align}$
$\text{align} = \text{LAGAN}(\text{align - } X_i, X_i', \text{anchors})$

// realign X_i

$\text{progressive}_\text{alignment}(T, \text{anchors})$
if T is not a leaf node
$\text{align}_\text{left} = \text{progressive}_\text{alignment}(T.\text{left})$
$\text{align}_\text{right} = \text{progressive}_\text{alignment}(T.\text{right})$
$\text{align} = \text{LAGAN}(\text{align}_\text{left}, \text{align}_\text{right}, \text{anchors})$
return align
Progressive Alignment

• given a guide tree relating \(n \) genomes
• construct multiple alignment by performing \(n-1 \) pairwise alignments

![Diagram](image)

Progressive Alignment: MLAGAN Example

align pairs of sequences
human chimpanzee mouse rat
align multi-sequences (alignments)

align multi-sequence with sequence
chicken
Progressive Alignment: MLAGAN Example

suppose we’re aligning the multi-sequence X/Y with Z

1. anchors from X-Z and Y-Z become anchors for X/Y-Z
2. overlapping anchors are reweighted
3. LIS algorithm is used to chain anchors

Figure from: Brudno et al. *Genome Research*, 2003

Reweighting Anchors in MLAGAN

\[
(s_1 + s_2) \times \frac{I}{U}
\]

\[
\frac{I}{U}
\]
Genome Rearrangements

- can occur within a chromosome or across chromosomes
- can have combinations of these events

Genome Rearrangement Example:
Mouse vs. Human X Chromosome

- each colored block represents a syntenic region of the two chromosomes
- the two panels show the two most parsimonious sets of rearrangements to map one chromosome to the other
The Mauve Method
[Darling et al., Genome Research, 2004]

Given: k genomes X^1, \ldots, X^k
1. find multi-MUMs (MUMs present in 2 or more genomes)
2. calculate a guide tree based on multi-MUMs
3. find LCBs (sequences of multi-MUMs) to use as anchors
4. do recursive anchoring within and outside of LCBs
5. calculate a progressive alignment of each LCB using guide tree

* note: no LIS step!

2. Calculating the Guide Tree in Mauve

• unlike MLAGAN, Mauve calculates the guide tree instead of taking it as an input

1. find multi-MUMs in sequences
2. calculate pairwise distances
3. run neighbor-joining to get guide tree

• distance between two sequences is based on fraction of sequences shared in multi-MUMs
3. Selecting Anchors: Finding Local Collinear Blocks

repeat
• partition set of multi-MUMs, M into collinear blocks
• find minimum-weight collinear block(s)
• remove minimum weight block(s) if they’re sufficiently small until minimum-weight block is not small enough

4. and 5. Recursive Anchoring and Gapped Alignment

• recursive anchoring (finding finer multi-MUMs and LCBs) and standard alignment (CLUSTALW) are used to extend LCBs
Mauve Alignment of 9 Enterobacteria
(Salmonella and E. coli)

Mauve vs. MLAGAN:
Accuracy on Simulated Genome Data

substitution and indel rates observed in enterobacteria
Mauve vs. LAGAN: Accuracy on Simulated Genome Data with Inversions

Evolution with *Horizontal Transfer*
Mauve Accuracy on Simulated Enterobacteria-like Data

- data here include horizontal transfers
- small HT events have little effect compared to large HT events
- when scored on regions conserved in all 9 taxa, accuracy is always > 98%

Figures courtesy of Aaron Darling

Mercator

- orthologous segment identification: graph-based method
- breakpoint identification: refine segment endpoints with a graphical model
Establishing Anchors Representing Orthologous Segments

- anchors can correspond to genes, exons or MUMS
- e.g., may do all-vs-all pairwise comparison of genes
- construct graph with anchors as vertices and high-similarity hits as edges (weighted by alignment score)

Rough Orthology Map

k-partite graph with edge weights
vertices = anchors, edges = sequence similarity
Greedy Segment Identification

- for $i = k$ to 2 do
 - identify repetitive anchors (depends on number of high-scoring edges incident to each anchor)
 - find “best-hit” anchor cliques of size $\geq i$
 - join colinear cliques into segments
 - filter edges not consistent with significant segments

Mercator Example

repetitive elements (black anchors) are identified; 3-cliques (red and blue anchors) are found

segments are formed by red and blue anchors; inconsistent edges are filtered

2-cliques are found and incorporated into segments
Refining the Map: Finding Breakpoints

- **breakpoints**: the positions at which genomic rearrangements disrupt colinearity of segments

Mercator finds breakpoints by using inference in an *undirected graphical model*

Undirected Graphical Models

- an undirected graphical model represents a probability distribution over a set of variables using a factored representation

\[
p(b) = \frac{1}{Z} \prod_{C \in \text{cliques}} \psi_C(b_C)
\]

- B_i: random variable
- b: assignment of values to all variables
- b_C: assignment of values subset of variables in C
- ψ_C: function (called a potential) representing the “compatibility” of a given set of values
- Z: normalization term
Undirected Graphical Models

\[p(b) = \frac{1}{Z} \prod_{C \in \text{cliques}} \psi_C(b_C) \]

for the given graph:

\[p(b) = \frac{1}{Z} \psi_1(b_1, b_3, b_5) \psi_2(b_1, b_6, b_7) \psi_3(b_2, b_4, b_6) \]

The Breakpoint Graph

some prefix of region 2 and some prefix of region 11 should be aligned
Breakpoint Undirected Graphical Model

- Mercator frames the task of finding breakpoints as an inference task in an undirected graphical model.

\[
p(b) = \frac{1}{Z} \prod_{C \in \text{cliques}} \psi_C(b_C)
\]

- configuration of breakpoints
- potential function representing score of multiple alignment of sequences in clique \(C \) for breakpoints in \(b \)

- the possible values for a variable indicate the possible coordinates for a breakpoint
- the potential for a clique is a function of the alignment score for the breakpoint regions split at the breakpoints \(b_C \)
Breakpoint Undirected Graphical Model

\[p(\mathbf{b}) = \frac{1}{Z} \prod_{C \in \text{cliques}} \psi_C(\mathbf{b}_C) \]

- **inference task**: find most probable configuration \(\mathbf{b} \) of breakpoints
- not tractable in this case
 - graph has a high degree of connectivity
 - multiple alignment is difficult
- so Mercator uses several heuristics

Making Inference Tractable in Breakpoint Undirected Graphical Model

\[p(\mathbf{b}) = \frac{1}{Z} \prod_{C \in \text{cliques}} \psi_C(\mathbf{b}_C) \]

- assign potentials, based on pairwise alignments, to edges only

\[p(\mathbf{b}) = \frac{1}{Z} \prod_{(i,j) \in \text{edges}} \psi_{i,j}(b_i, b_j) \]

- eliminate edges by finding a *minimum spanning forest*, where edges are weighted by phylogenetic distance
Minimal Spanning Forest

- **minimal spanning tree**: a minimal-weight tree that connects all vertices in a graph
- **minimal spanning forest**: a set of MSTs, one for each connected component

Breakpoint Finding Algorithm

1. construct breakpoint segment graph
2. weight edges with phylogenetic distances
3. find minimum spanning tree/forest
4. perform pairwise alignment for each edge in MST
5. use alignments to estimate $\psi_{i,j}(b_i, b_j)$
6. perform max-product inference (similar to Viterbi) to find maximizing b_i
Comments on Whole-Genome Alignment Methods

- employ common strategy
 - find seed matches
 - identify (sequences of) matches to anchor alignment
 - fill in the rest with standard methods (e.g. DP)
- vary in what they (implicitly) assume about
 - the distance of sequences being compared
 - the prevalence or rearrangements
- involve a lot of heuristics
 - for efficiency
 - because we don’t know enough to specify a precise objective function (e.g. how should costs should be assigned to various rearrangements)