Interpolated Markov Models for Gene Finding

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2011
Colin Dewey
cdewey@biostat.wisc.edu
Goals for Lecture

the key concepts to understand are the following
• the gene-finding task
• the trade-off between potential predictive value and parameter uncertainty in choosing the order of a Markov model
• interpolated Markov models
• back-off models
The Gene Finding Task

Given: an uncharacterized DNA sequence
Do: locate the genes in the sequence, including the coordinates of individual *exons* and *introns*
Sources of Evidence for Gene Finding

- **signals**: the sequence *signals* (e.g. splice junctions) involved in gene expression
- **content**: statistical properties that distinguish protein-coding DNA from non-coding DNA
- **conservation**: signal and content properties that are conserved across related sequences (e.g. syntenic regions of the mouse and human genome)
Gene Finding: Search by Content

• encoding a protein affects the statistical properties of a DNA sequence
 – some amino acids are used more frequently than others (Leu more popular than Trp)
 – different numbers of codons for different amino acids (Leu has 6, Trp has 1)
 – for a given amino acid, usually one codon is used more frequently than others
 • this is termed codon preference
 • these preferences vary by species
Codon Preference in E. Coli

<table>
<thead>
<tr>
<th>AA</th>
<th>codon</th>
<th>/1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>GGG</td>
<td>1.89</td>
</tr>
<tr>
<td>Gly</td>
<td>GGA</td>
<td>0.44</td>
</tr>
<tr>
<td>Gly</td>
<td>GGU</td>
<td>52.99</td>
</tr>
<tr>
<td>Gly</td>
<td>GGC</td>
<td>34.55</td>
</tr>
<tr>
<td>Glu</td>
<td>GAG</td>
<td>15.68</td>
</tr>
<tr>
<td>Glu</td>
<td>GAA</td>
<td>57.20</td>
</tr>
<tr>
<td>Asp</td>
<td>GAU</td>
<td>21.63</td>
</tr>
<tr>
<td>Asp</td>
<td>GAC</td>
<td>43.26</td>
</tr>
</tbody>
</table>
Reading Frames

• a given sequence may encode a protein in any of the six reading frames

G C T A C G G G A G C T T T C G G A G C
C G A T G C C T C G A A G C C T C G

G C T A C G G G A G C T T T C G G A G C
C G A T G C C T C G A A G C C T C G

G C T A C G G G A G C T T T C G G A G C
C G A T G C C T C G A A G C C T C G

G C T A C G G G A G C T T T C G G A G C
C G A T G C C T C G A A G C C T C G

G C T A C G G G A G C T T T C G G A G C
C G A T G C C T C G A A G C C T C G

G C T A C G G G A G C T T T C G G A G C
C G A T G C C T C G A A G C C T C G

G C T A C G G G A G C T T T C G G A G C
C G A T G C C T C G A A G C C T C G

G C T A C G G G A G C T T T C G G A G C
C G A T G C C T C G A A G C C T C G
Open Reading Frames (ORFs)

- an ORF is a sequence that
 - starts with a potential start codon
 - ends with a potential stop codon, *in the same reading frame*
 - doesn’t contain another stop codon in-frame
 - and is sufficiently long (say > 100 bases)

- an ORF meets the minimal requirements to be a protein-coding gene in an organism without introns
Markov Models & Reading Frames

- consider modeling a given coding sequence
- for each “word” we evaluate, we’ll want to consider its position with respect to the reading frame we’re assuming

reading frame

G C T A C G G

G is in 3rd codon position

C T A C G G

G is in 1st position

T A C G G A

A is in 2nd position

- can do this using an inhomogenous model
A Fifth Order Inhomogenous Markov Chain

Start

Position 2:
- AAAAA
- CTACA
- CTACC
- CTACG
- GCTAC
- TTTTT

Position 3:
- AAAAA
- CTACA
- CTACC
- CTACG
- GCTAC
- TTTTT

Position 1:
- AAAAA
- TACAA
- TACAC
- TACAG
- TACAT
- TTTTT

Transitions to states in pos 2
Selecting the Order of a Markov Chain Model

- higher order models remember more “history”
- additional history can have predictive value
- example:
 - predict the next word in this sentence fragment
 “…you__” (are, give, idiot, say, see, too, …?)
 - now predict it given more history
 “…can you___”
 “…say can you___”
 “…oh say can you___”
Selecting the Order of a Markov Chain Model

• but the number of parameters we need to estimate grows exponentially with the order
 – for modeling DNA we need $O(4^{n+1})$ parameters for an nth order model

• the higher the order, the less reliable we can expect our parameter estimates to be

• suppose we have 100k bases of sequence to estimate parameters of a model
 – for a 2nd order homogenous Markov chain, we’d see each history 6250 times on average
 – for an 8th order chain, we’d see each history ~ 1.5 times on average
Interpolated Markov Models

- the IMM idea: manage this trade-off by interpolating among models of various orders
- *simple* linear interpolation:

\[
\begin{align*}
P_{\text{IMM}}(x_i | x_{i-n}, \ldots, x_{i-1}) &= \lambda_0 P(x_i) \\
+ \lambda_1 P(x_i | x_{i-1}) \\
+ \lambda_n P(x_i | x_{i-n}, \ldots, x_{i-1}) \\
\end{align*}
\]

- where \(\sum_i \lambda_i = 1 \)
Interpolated Markov Models

• we can make the weights depend on the history
 – for a given order, we may have significantly more data to estimate some words than others
• general linear interpolation

\[
P_{\text{IMM}}(x_i \mid x_{i-n}, \ldots, x_{i-1}) = \lambda_0 P(x_i) + \lambda_1(x_{i-1}) P(x_i \mid x_{i-1}) + \ldots + \lambda_n(x_{i-n}, \ldots, x_{i-1}) P(x_i \mid x_{i-n}, \ldots, x_{i-1})
\]

\(\lambda\) is a function of the given history
The GLIMMER System
[Salzberg et al., Nucleic Acids Research, 1998]

• system for identifying genes in bacterial genomes
• uses 8th order, inhomogeneous, interpolated Markov chain models
IMMs in GLIMMER

• how does GLIMMER determine the λ values?
• first, let’s express the IMM probability calculation recursively

$$P_{\text{IMM},n}(x_i | x_{i-n},...,x_{i-1}) =$$

$$\lambda_n(x_{i-n},...,x_{i-1})P(x_i | x_{i-n},...,x_{i-1}) +$$

$$[1 - \lambda_n(x_{i-n},...,x_{i-1})]P_{\text{IMM},n-1}(x_i | x_{i-n+1},...,x_{i-1})$$

• let $c(x_{i-n},...,x_{i-1})$ be the number of times we see the history $x_{i-n},...,x_{i-1}$ in our training set

$$\lambda_n(x_{i-n},...,x_{i-1}) = 1 \text{ if } c(x_{i-n},...,x_{i-1}) > 400$$
IMMs in GLIMMER

• if we haven’t seen x_{i-n}, \ldots, x_{i-1} more than 400 times, then compare the counts for the following:

<table>
<thead>
<tr>
<th>nth order history + base</th>
<th>$(n-1)$th order history + base</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{i-n}, \ldots, x_{i-1}, a$</td>
<td>$x_{i-n+1}, \ldots, x_{i-1}, a$</td>
</tr>
<tr>
<td>$x_{i-n}, \ldots, x_{i-1}, c$</td>
<td>$x_{i-n+1}, \ldots, x_{i-1}, c$</td>
</tr>
<tr>
<td>$x_{i-n}, \ldots, x_{i-1}, g$</td>
<td>$x_{i-n+1}, \ldots, x_{i-1}, g$</td>
</tr>
<tr>
<td>$x_{i-n}, \ldots, x_{i-1}, t$</td>
<td>$x_{i-n+1}, \ldots, x_{i-1}, t$</td>
</tr>
</tbody>
</table>

• use a statistical test (χ^2) to get a value d indicating our confidence that the distributions represented by the two sets of counts are different
IMMs in GLIMMER

• putting it all together

\[\lambda_n(x_{i-n}, \ldots, x_{i-1}) = \begin{cases}
1 & \text{if } c(x_{i-n}, \ldots, x_{i-1}) > 400 \\
\left(\frac{d}{400}\right)^{x_{i-n}} \times c(x_{i-n}, \ldots, x_{i-1}) & \text{else if } d \geq 0.5 \\
0 & \text{otherwise}
\end{cases} \]

where \(d \in (0,1) \)
• suppose we have the following counts from our training set

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGA</td>
<td>25</td>
<td>CGA</td>
<td>100</td>
<td>GA</td>
</tr>
<tr>
<td>ACGC</td>
<td>40</td>
<td>CGC</td>
<td>90</td>
<td>GC</td>
</tr>
<tr>
<td>ACGG</td>
<td>15</td>
<td>CGG</td>
<td>35</td>
<td>GG</td>
</tr>
<tr>
<td>ACGT</td>
<td>20</td>
<td>CGT</td>
<td>75</td>
<td>GT</td>
</tr>
</tbody>
</table>

\[
\chi^2 \text{ test: } d = 0.857 \quad \chi^2 \text{ test: } d = 0.140
\]

\[
\lambda_3(ACG) = 0.857 \times \frac{100}{400} = 0.214
\]

\[
\lambda_2(CG) = 0 \quad (d < 0.5, \quad c(CG) < 400)
\]

\[
\lambda_1(G) = 1 \quad (c(G) > 400)
\]
• now suppose we want to calculate $P_{\text{IMM},3}(T \mid ACG)$

$$P_{\text{IMM},1}(T \mid G) = \lambda_1(G)P(T \mid G) + (1 - \lambda_1(G))P_{\text{IMM},0}(T) = P(T \mid G)$$

$$P_{\text{IMM},2}(T \mid CG) = \lambda_2(CG)P(T \mid CG) + (1 - \lambda_2(CG))P_{\text{IMM},1}(T \mid G) = P(T \mid G)$$

$$P_{\text{IMM},3}(T \mid ACG) = \lambda_3(ACG)P(T \mid ACG) + (1 - \lambda_3(ACG))P_{\text{IMM},2}(T \mid CG) = 0.214 \times P(T \mid ACG) + (1 - 0.214) \times P(T \mid G)$$
Gene Recognition in GLIMMER

- essentially ORF classification
- for each ORF
 - calculate the prob of the ORF sequence in each of the 6 possible reading frames
 - if the highest scoring frame corresponds to the reading frame of the ORF, mark the ORF as a gene
- for overlapping ORFs that look like genes
 - score overlapping region separately
 - predict only one of the ORFs as a gene
GLIMMER Experiment

- 8th order IMM vs. 5th order Markov model
- trained on 1168 genes (ORFs really)
- tested on 1717 annotated (more or less known) genes
GLIMMER Results

<table>
<thead>
<tr>
<th>Model</th>
<th>TP</th>
<th>FN</th>
<th>FP & TP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLIMMER IMM</td>
<td>1680 (97.8%)</td>
<td>37</td>
<td>209</td>
</tr>
<tr>
<td>5th-Order Markov</td>
<td>1574 (91.7%)</td>
<td>143</td>
<td>104</td>
</tr>
</tbody>
</table>

The first column indicates how many of the 1717 annotated genes in *H. influenzae* were found by each algorithm. The ‘additional genes’ column shows how many extra genes, not included in the 1717 annotated entries, were called genes by each method.

- GLIMMER has greater sensitivity than the baseline
- It’s not clear if its precision/specificity is better
An Alternative Approach: Back-off Models

• devised for language modeling

\[
P_{\text{BACK}}(x_i | x_{i-n}, ..., x_{i-1}) = \begin{cases}
(1 - \delta) \frac{c(x_{i-n}, ..., x_i)}{c(x_{i-n}, ..., x_{i-1})}, & \text{if } c(x_{i-n}, ..., x_i) > k \\
\lambda P_{\text{BACK}}(x_i | x_{i-n+1}, ..., x_{i-1}), & \text{otherwise}
\end{cases}
\]

• use \(n\)th order probability if we’ve seen this sequence
 \((\text{history} + \text{current character}) \text{ } k\) times

• otherwise back off to lower-order
An Alternative Approach: Back-off Models

\[P_{BACK}(x_i \mid x_{i-n}, \ldots, x_{i-1}) = \begin{cases} (1 - \delta) \frac{c(x_{i-n}, \ldots, x_i)}{c(x_{i-n}, \ldots, x_{i-1})}, & \text{if } c(x_{i-n}, \ldots, x_i) > k \\ \lambda P_{BACK}(x_i \mid x_{i-n+1}, \ldots, x_{i-1}), & \text{otherwise} \end{cases} \]

- why do we need \(\delta \) and \(\lambda \)?
- \(\delta \): save some probability mass for sequences we haven’t seen
- \(\lambda \): distribute this saved mass to lower-order sequences (different \(\lambda \) for each history; really \(\lambda(x_{i-n+1}, \ldots, x_{i-1}) \))
- this is important for natural language, where there are many words that could follow a particular history
Simple Back-off Example

\[P_{\text{BACK}}(x_i \mid x_{i-n}, \ldots, x_{i-1}) = \begin{cases}
(1 - \delta) \frac{c(x_{i-n}, \ldots, x_i)}{c(x_{i-n}, \ldots, x_{i-1})}, & \text{if } c(x_{i-n}, \ldots, x_i) > k \\
\lambda P_{\text{BACK}}(x_i \mid x_{i-n+1}, \ldots, x_{i-1}), & \text{otherwise}
\end{cases} \]

- given training sequence: TAACGACACG
- suppose \(\delta = 0.2 \) and \(k = 0 \)

\[
P_{\text{BACK}}(A) = \frac{4}{10} \\
P_{\text{BACK}}(A \mid A) = (1 - \delta) \frac{1}{4} = 0.2 \\
P_{\text{BACK}}(C) = \frac{3}{10} \\
P_{\text{BACK}}(C \mid A) = (1 - \delta) \frac{3}{4} = 0.6 \\
P_{\text{BACK}}(G) = \frac{2}{10} \\
P_{\text{BACK}}(G \mid A) = \left[\frac{\delta}{P_{\text{BACK}}(G) + P_{\text{BACK}}(T)} \right] \times P_{\text{BACK}}(G) = \frac{0.2}{0.3} \times 0.2 \\
P_{\text{BACK}}(T) = \frac{1}{10} \\
P_{\text{BACK}}(T \mid A) = \left[\frac{\delta}{P_{\text{BACK}}(G) + P_{\text{BACK}}(T)} \right] \times P_{\text{BACK}}(T) = \frac{0.2}{0.3} \times 0.1
\]