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Protein-protein Interaction Networks
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Overview

® Experimental techniques for determining
networks

® Properties of biological networks

® Comparative network tasks



Experimental techniques

® Yeast two-hybrid system
® Protein-protein interactions
® Microarrays
® Expression patterns of mRNAs

® Similar patterns imply involvement in same
regulatory or signaling network

® Knock-out studies

® |dentify genes required for synthesis of certain
molecules



Yeast two-hybrid system
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Microarrays
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Knock-out studies

Yeast with one gene deleted Growth!?

Rich media His- media



Topological properties of networks

® Degree: number of edges infout of a node
® Average degree

® Degree distribution: P(k), fraction of nodes
with degree k

® Clustering coefficient: measure of grouping in
graph

® Path length: shortest path between two nodes

® Average path length



Clustering coefficient

2727;

Ci = ki (k; — 1)

C;: clustering coefficient of node ¢

n;: number of edges between neighbors of node 7
(number of triangles involving node %)

k;: degree of node ¢

Interesting to look at C(k): average clustering
coefficient of nodes with degree k



Erdos & Renyi random graphs

® Erdos & Rényi (1960): On the evolution of random

graphs

® (Construction

® Start with N vertices, zero edges

® Add each possible ec

® Expected number of ed

ge with probability p
ges: pN(N - 1)/2

® Expected degree: p(N-

)



Properties of ER graphs

Degree of nodes ~ Poisson distribution

Most nodes have degree close to
average degree

Average path length ~ log n

Clustering coefficient does not depend
on degree k

e~ AN\E

(Barabasi & Oltvai, 2004)



Scale-free networks

® Barabasi & Albert (1999): Emergence of scaling in random
networks

® Random construction:
® Start with a few connected nodes
® Add nodes one at a time
® Add m edges between new node and previous nodes
® For each edge, probability of being incident to node
S ]{77;
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Properties of scale-free

networks

Degrees:

® P(k) ~ kY (power law distribution)

® Most nodes have very small degree

® A few nodes (hubs) with large degree
Average path length ~ log log n

Flat C(k)

Properties depend on value of Yy
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(Barabasi & Oltvai, 2004)



Hierarchical netwgrk

/\!’;vé/m:%'\!'/\

x» /A\\\‘\.‘\

® Recursive generation

® Scale-free o
® Clustering coefficient dependent
on degree: C(k) ~ k! N

log C(k)

log k

(Barabasi & Oltvai, 2004)



Classifying networks

® Metabolic networks
® scale-free
® PPl networks
® scale-free
® Regulatory networks
® mixed
® out-degree of transcription factors is scale-free

® in-degree of regulated genes is exponential



Paths in biological
networks

Path length between two vertices is often
very small

random graph gives expected path length as
log N

scale-free graph has log log N expected path
length

However, hubs not often connected to each
other: disassortative



Small-world networks

® Small-world networks are graphs with small
average path length

® ER graphs are small-world: log n average
path length

® Scale-free graphs often very small: log log n
(for some values of Y)

® However, biological networks are both
small-world and disassortative: hubs are not
often connected to each other



Evolving networks

® Growth
® FEarly nodes have more links
® Preferential attachment

® As new nodes added, more likely to be connected to
already highly-connected nodes

® |eads to scale-free networks
® Gene duplication
® Major force in protein network evolution

® Highly-connected nodes more likely to have neighbors
duplicate and add more edges



Network problems

® Network inference
® Given raw experimental data
® [nfer network structure
® Motif finding
® |dentify common subgraph topologies
® Module detection
® |dentify subgraphs that perform same function
® Conserved modules

® |dentify modules that are shared in networks
of multiple species



Network motifs

® Problem: Find subgraph topologies that are statistically
more frequent than expected

® Brute force approach
® Count all topologies of subgraphs of size m

® Randomize graph (retain degree distribution) and
count again

® Output topologies that are over/under represented

/ Feed-forward loop: over-
represented in regulatory .- y
networks =

not very common . : ‘



Network modules

® Modules: dense (highly-connected)
subgraphs (e.g., large cliques or partially
incomplete cliques)

® Problem: Identify the component modules of
a network

® Difficulty: definition of module is not precise

® Hierarchical networks have modules at
multiple scales

® At what scale to define modules?



Conserved modules

® |dentify modules in multiple species that have
“conserved” topology

® Typical ap

® Use seq

broach:

uence alignment to identify

nomologous proteins and establish

correspondence between networks

® Using correspondence, output subsets of
nodes with similar topology



Conserved interactions

® Network comparison
Inteéraction  between species also

orthologs

requires sequence
comparison

® Protein sets compared
to identify orthologs

® Common technique:
highest scoring BLAST

hits used for establishing

interologs correspondences



Conserved modules

yeast human

® Conserved module: orthologous
subnetwork with significantly similar edge
presence/absence



Comparative network analysis

® Compare networks from different...
® interaction detection methods
® yeast 2-hybrid, mass spectrometry, etc.
® conditions
® heat, media, other stresses
® time points
® development, cell cycle

® species



Comparative tasks

® |ntegration

® Combine networks derived from different
methods (e.g. experimental data types)

® Alignment

® |dentify nodes, edges, modules common to
two networks (e.g., from different species)

® Database query

® |dentify subnetworks similar to query in
database of networks



Network alignment graph

network alignment graph

® Analogous to pairwise sequence alighment



Biological networks

Conserved module detection

Species 1
(Condition/type 1)

[
v

Species 2
(Condition/type 2)

Matched proteins Network alignment
Match protein pairs that are
sequence-similar
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Matched
protein pairs

Conserved
interactions

High-scoring

conserved subnetworks
Search
algorithm

(Sharan & ldeker, 2006)



Real module example
Module for RNA metabolism (Sharan et al., 2005)

Oyeast D worm O fly

® Note: a protein may have more than one
ortholog in another network



Basic alignment strategy

® Define scoring function on subnetworks

® high score = conserved module

® Use BLAST to infer orthologous proteins

® |dentify “seeds” around each protein: small
conserved subnetworks centered around
the protein

® Grow seeds by adding proteins that increase
alignment score



Scoring functions via Subnetwork modeling

® \We wish to calculate the likelihood of a
certain subnetwork U under different models

® Subnetwork model (M)

® Connectivity of U given by target graph
H, each edge in H appearing in U with
probability B (large)

e Null model (M)

® Each edge appears with probability
according to random graph distribution
(but with degree distribution fixed)

(Sharan et al.,, 2005)



Noisy observations

® Typically weight edges in graph according to
confidence in interaction (expressed as a
probability)

o [et
® T.:event that proteins u, v interact
® F.:event that proteins u, v do not interact

® O, observations of possible interactions
between proteins u and v



Subnetwork model probability

® Assume (for explanatory purposes) that
subnetwork model is a clique:

Pr(Oy|M,) = I PrOwlMy)
(u,v)eUXU

— 1] [Pr(OwlTuw, Mo)Pr(Tus| M) + Pr(Ou| Fuv, My) Pr(Fuy| M)
(u,v)eUXU

(u,v)eUxU




Null model probability

® Given values for puy: probability of edge (u,v)
in random graph with same degrees

Pr(OylMy) = J]  [PuwPr(Owl|Tu) + (1 = puv) Pr(Ouy| Fuv)]
(u,v)eUxU

® How to get random graph if we don’t know
true degree distribution? Estimate them:

di =Y Pr(T;;|0;;)
j

B PT(OUU‘TurU)Pr(Tuv)
B PT(Ouv|Tu’U)PT(Tuv) —I_ PT(OU’U‘FUU)(]‘ o PT(T’WU))

Pr(Tyu,|Ouw)



Likelihood ratio

® Score subnetwork with (log) ratio of
likelihoods under the two models

P’/‘(OU|MS)
P?“(OU‘Mn)

= log

_ Z log BP1(Ouy|Tuw) + (1 — B) Pr(Ouyy| Fuy)

(u,0)EU XU Puv P1(Oup | Tuw) + (1 = Puw ) PT(Ous | Fuv)

® Note the decomposition into sum of scores
for each edge



Seed construction

® Finding “heavy induced subgraphs’ is NP-
hard (Sharan et al., 2004)

® Heuristic:
® Find high-scoring subgraph “seeds”
® Grow seeds greedily
® Seed techniques: for each node v:
® Find heavy subgraph of size 4 including v

® Find highest-scoring length 4 path with v



Randomizing graphs

® For statistical tests, need to keep degree
distribution the same

® Shuffle step:

® Choose two edges (a,b), (¢,d) in the
current graph

® Remove those edges

® Add edges (a,d), (c,b)




Predictions from alighments

® Conserved modules of proteins enriched for
certain functions often indicate shared function
of other proteins

® Use to predict function of unannotated
proteins

® Sharan et al, 2005: annotated 4,645 proteins
with estimated accuracy of 58-63%

® Predict missing interactions

® Sharan et al,, 2005: 2,609 predicted
interactions in fly, 40 —52% accurate



Parallels to sequence analysis
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