
Comparative Network 
Analysis

BMI/CS 776
www.biostat.wisc.edu/bmi776/ 

Spring 2012
Colin Dewey 

cdewey@biostat.wisc.edu



Protein-protein Interaction Networks

104 | FEBRUARY 2004 | VOLUME 5 www.nature.com/reviews/genetics

R E V I EW S

mathematical properties of random networks14. Their
much-investigated random network model assumes that
a fixed number of nodes are connected randomly to each
other (BOX 2). The most remarkable property of the model
is its ‘democratic’or uniform character, characterizing the
degree, or connectivity (k ; BOX 1), of the individual nodes.
Because, in the model, the links are placed randomly
among the nodes, it is expected that some nodes collect
only a few links whereas others collect many more. In a
random network, the nodes degrees follow a Poisson
distribution, which indicates that most nodes have
roughly the same number of links, approximately equal
to the network’s average degree, <k> (where <> denotes
the average); nodes that have significantly more or less
links than <k> are absent or very rare (BOX 2).

Despite its elegance, a series of recent findings indi-
cate that the random network model cannot explain
the topological properties of real networks. The 
deviations from the random model have several key
signatures, the most striking being the finding that, in
contrast to the Poisson degree distribution, for many
social and technological networks the number of nodes
with a given degree follows a power law. That is, the
probability that a chosen node has exactly k links 
follows P(k) ~ k –γ, where γ is the degree exponent, with
its value for most networks being between 2 and 3 
(REF. 15). Networks that are characterized by a power-law
degree distribution are highly non-uniform, most of
the nodes have only a few links. A few nodes with a very
large number of links, which are often called hubs, hold
these nodes together. Networks with a power degree
distribution are called scale-free15, a name that is rooted
in statistical physics literature. It indicates the absence
of a typical node in the network (one that could be
used to characterize the rest of the nodes). This is in
strong contrast to random networks, for which the
degree of all nodes is in the vicinity of the average
degree, which could be considered typical. However,
scale-free networks could easily be called scale-rich as
well, as their main feature is the coexistence of nodes of
widely different degrees (scales), from nodes with one
or two links to major hubs.

Cellular networks are scale-free. An important develop-
ment in our understanding of the cellular network
architecture was the finding that most networks within
the cell approximate a scale-free topology. The first evi-
dence came from the analysis of metabolism, in which
the nodes are metabolites and the links represent
enzyme-catalysed biochemical reactions (FIG. 1).As many
of the reactions are irreversible, metabolic networks are
directed. So, for each metabolite an ‘in’ and an ‘out’
degree (BOX 1) can be assigned that denotes the number
of reactions that produce or consume it, respectively.
The analysis of the metabolic networks of 43 different
organisms from all three domains of life (eukaryotes,
bacteria, and archaea) indicates that the cellular metabo-
lism has a scale-free topology, in which most metabolic
substrates participate in only one or two reactions, but a
few, such as pyruvate or coenzyme A, participate in
dozens and function as metabolic hubs16,17.

Depending on the nature of the interactions, net-
works can be directed or undirected. In directed
networks, the interaction between any two nodes has a
well-defined direction, which represents, for example,
the direction of material flow from a substrate to a
product in a metabolic reaction, or the direction of
information flow from a transcription factor to the gene
that it regulates. In undirected networks, the links do
not have an assigned direction. For example, in protein
interaction networks (FIG. 2) a link represents a mutual
binding relationship: if protein A binds to protein B,
then protein B also binds to protein A.

Architectural features of cellular networks
From random to scale-free networks. Probably the most
important discovery of network theory was the realiza-
tion that despite the remarkable diversity of networks
in nature, their architecture is governed by a few simple
principles that are common to most networks of major
scientific and technological interest9,10. For decades
graph theory — the field of mathematics that deals
with the mathematical foundations of networks —
modelled complex networks either as regular objects,
such as a square or a diamond lattice, or as completely
random network13. This approach was rooted in the
influential work of two mathematicians, Paul Erdös,
and Alfréd Rényi, who in 1960 initiated the study of the

Figure 2 | Yeast protein interaction network. A map of protein–protein interactions18 in
Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements23, illustrates
that a few highly connected nodes (which are also known as hubs) hold the network together.
The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates
the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal,
orange = slow growth, yellow = unknown). Reproduced with permission from REF. 18 ©
Macmillan Magazines Ltd.
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(Jeong et al., 2001, Nature)



Overview

• Experimental techniques for determining 
networks

• Properties of biological networks

• Comparative network tasks



Experimental techniques

• Yeast two-hybrid system

• Protein-protein interactions

• Microarrays

• Expression patterns of mRNAs

• Similar patterns imply involvement in same 
regulatory or signaling network

• Knock-out studies

• Identify genes required for synthesis of certain 
molecules



Yeast two-hybrid system

(Stephens & Banting, 2000, Traffic)



Microarrays

(Eisen et al., 1998, PNAS)

genes



Knock-out studies
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Topological properties of networks

• Degree: number of edges in/out of a node

• Average degree

• Degree distribution: P(k), fraction of nodes 
with degree k

• Clustering coefficient: measure of grouping in 
graph

• Path length: shortest path between two nodes

• Average path length



Clustering coefficient

Ci: clustering coe�cient of node i

ni: number of edges between neighbors of node i
(number of triangles involving node i)

Ci =
2ni

ki(ki � 1)

ki: degree of node i

Interesting to look at C(k): average clustering 
coefficient of nodes with degree k



Erdös & Rényi random graphs

• Erdös & Rényi (1960): On the evolution of random 
graphs

• Construction

• Start with N vertices, zero edges

• Add each possible edge with probability p

• Expected number of edges: pN(N - 1)/2

• Expected degree: p(N-1)



Properties of ER graphs
• Degree of nodes ~ Poisson distribution

• Most nodes have degree close to 
average degree

• Average path length ~ log n

• Clustering coefficient does not depend 
on degree k
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Box 2 | Network models

Network models are crucial for shaping our understanding of complex networks and help to explain the origin of observed network
characteristics. There are three models that had a direct impact on our understanding of biological networks.

Random networks 
The Erdös–Rényi (ER) model of a random network14 (see figure, part A) starts with N nodes and connects each pair of nodes with probability p,
which creates a graph with approximately pN(N–1)/2 randomly placed links (see figure, part Aa). The node degrees follow a Poisson distribution
(see figure, part Ab), which indicates that most nodes have approximately the same number of links (close to the average degree <k>). The tail
(high k region) of the degree distribution P(k) decreases exponentially, which indicates that nodes that significantly deviate from the average are
extremely rare. The clustering coefficient is independent of a node’s degree, so C(k) appears as a horizontal line if plotted as a function of k (see
figure, part Ac). The mean path length is proportional to the logarithm of the network size, l ~ log N, which indicates that it is characterized by the
small-world property.

Scale-free networks
Scale-free networks (see figure, part B) are characterized by a power-law degree distribution; the probability that a node has k links follows 
P(k) ~ k –γ, where γ is the degree exponent. The probability that a node is highly connected is statistically more significant than in a random graph,
the network’s properties often being determined by a relatively small number of highly connected nodes that are known as hubs (see figure, part
Ba; blue nodes). In the Barabási–Albert model of a scale-free network15, at each time point a node with M links is added to the network, which
connects to an already existing node I with probability ΠI = kI/ΣJkJ, where kI is the degree of node I (FIG. 3) and J is the index denoting the sum over
network nodes. The network that is generated by this growth process has a power-law degree distribution that is characterized by the degree
exponent γ = 3. Such distributions are seen as a straight line on a log–log plot (see figure, part Bb). The network that is created by the
Barabási–Albert model does not have an inherent modularity, so C(k) is independent of k (see figure, part Bc). Scale-free networks with degree
exponents 2<γ<3, a range that is observed in most biological and non-biological networks, are ultra-small34,35, with the average path length
following ! ~ log log N, which is significantly shorter than log N that characterizes random small-world networks.

Hierarchical networks
To account for the coexistence of modularity, local clustering and scale-free topology in many real systems it has to be assumed that clusters
combine in an iterative manner, generating a hierarchical network47,53 (see figure, part C). The starting point of this construction is a small cluster
of four densely linked nodes (see the four central nodes in figure, part Ca). Next, three replicas of this module are generated and the three external
nodes of the replicated clusters
connected to the central node of
the old cluster, which produces a
large 16-node module. Three
replicas of this 16-node module
are then generated and the 16
peripheral nodes connected to
the central node of the old
module, which produces a new
module of 64 nodes. The
hierarchical network model
seamlessly integrates a scale-free
topology with an inherent
modular structure by generating
a network that has a power-law
degree distribution with degree
exponent γ = 1 + !n4/!n3 = 2.26
(see figure, part Cb) and a large,
system-size independent average
clustering coefficient <C> ~ 0.6.
The most important signature of
hierarchical modularity is the
scaling of the clustering
coefficient, which follows 
C(k) ~ k –1 a straight line of slope
–1 on a log–log plot (see figure,
part Cc). A hierarchical
architecture implies that sparsely
connected nodes are part of
highly clustered areas, with
communication between the
different highly clustered
neighbourhoods being
maintained by a few hubs 
(see figure, part Ca).
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Scale-free networks
• Barabási & Albert (1999): Emergence of scaling in random 

networks

• Random construction:

• Start with a few connected nodes

• Add nodes one at a time

• Add m edges between new node and previous nodes

• For each edge, probability of being incident to node 
i is ki�

j kj degree of node j



Properties of scale-free 
networks

• Degrees:

• P(k) ~ k-γ  (power law distribution)

• Most nodes have very small degree

• A few nodes (hubs) with large degree

• Average path length ~ log log n

• Flat C(k)

• Properties depend on value of γ

NATURE REVIEWS | GENETICS VOLUME 5 | FEBRUARY 2004 | 105

R E V I EW S

Box 2 | Network models

Network models are crucial for shaping our understanding of complex networks and help to explain the origin of observed network
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following ! ~ log log N, which is significantly shorter than log N that characterizes random small-world networks.

Hierarchical networks
To account for the coexistence of modularity, local clustering and scale-free topology in many real systems it has to be assumed that clusters
combine in an iterative manner, generating a hierarchical network47,53 (see figure, part C). The starting point of this construction is a small cluster
of four densely linked nodes (see the four central nodes in figure, part Ca). Next, three replicas of this module are generated and the three external
nodes of the replicated clusters
connected to the central node of
the old cluster, which produces a
large 16-node module. Three
replicas of this 16-node module
are then generated and the 16
peripheral nodes connected to
the central node of the old
module, which produces a new
module of 64 nodes. The
hierarchical network model
seamlessly integrates a scale-free
topology with an inherent
modular structure by generating
a network that has a power-law
degree distribution with degree
exponent γ = 1 + !n4/!n3 = 2.26
(see figure, part Cb) and a large,
system-size independent average
clustering coefficient <C> ~ 0.6.
The most important signature of
hierarchical modularity is the
scaling of the clustering
coefficient, which follows 
C(k) ~ k –1 a straight line of slope
–1 on a log–log plot (see figure,
part Cc). A hierarchical
architecture implies that sparsely
connected nodes are part of
highly clustered areas, with
communication between the
different highly clustered
neighbourhoods being
maintained by a few hubs 
(see figure, part Ca).
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Hierarchical network

• Recursive generation

• Scale-free

• Clustering coefficient dependent 
on degree: C(k) ~ k-1
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Box 2 | Network models

Network models are crucial for shaping our understanding of complex networks and help to explain the origin of observed network
characteristics. There are three models that had a direct impact on our understanding of biological networks.
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large 16-node module. Three
replicas of this 16-node module
are then generated and the 16
peripheral nodes connected to
the central node of the old
module, which produces a new
module of 64 nodes. The
hierarchical network model
seamlessly integrates a scale-free
topology with an inherent
modular structure by generating
a network that has a power-law
degree distribution with degree
exponent γ = 1 + !n4/!n3 = 2.26
(see figure, part Cb) and a large,
system-size independent average
clustering coefficient <C> ~ 0.6.
The most important signature of
hierarchical modularity is the
scaling of the clustering
coefficient, which follows 
C(k) ~ k –1 a straight line of slope
–1 on a log–log plot (see figure,
part Cc). A hierarchical
architecture implies that sparsely
connected nodes are part of
highly clustered areas, with
communication between the
different highly clustered
neighbourhoods being
maintained by a few hubs 
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Classifying networks

• Metabolic networks

• scale-free

• PPI networks

• scale-free

• Regulatory networks

• mixed

• out-degree of transcription factors is scale-free

• in-degree of regulated genes is exponential



Paths in biological 
networks

• Path length between two vertices is often 
very small

• random graph gives expected path length as 
log N

• scale-free graph has log log N expected path 
length

• However, hubs not often connected to each 
other: disassortative



Small-world networks

• Small-world networks are graphs with small 
average path length

• ER graphs are small-world: log n average 
path length

• Scale-free graphs often very small: log log n 
(for some values of ϒ)

• However, biological networks are both 
small-world and disassortative: hubs are not 
often connected to each other



Evolving networks
• Growth

• Early nodes have more links

• Preferential attachment

• As new nodes added, more likely to be connected to 
already highly-connected nodes

• Leads to scale-free networks

• Gene duplication

• Major force in protein network evolution

• Highly-connected nodes more likely to have neighbors 
duplicate and add more edges 



Network problems
• Network inference

• Given raw experimental data

• Infer network structure

• Motif finding

• Identify common subgraph topologies

• Module detection

• Identify subgraphs that perform same function

• Conserved modules

• Identify modules that are shared in networks 
of multiple species



Network motifs

• Problem: Find subgraph topologies that are statistically 
more frequent than expected

• Brute force approach

• Count all topologies of subgraphs of size m

• Randomize graph (retain degree distribution) and 
count again

• Output topologies that are over/under represented

Feed-forward loop: over-
represented in regulatory 

networks
not very common



Network modules

• Modules: dense (highly-connected) 
subgraphs (e.g., large cliques or partially 
incomplete cliques)

• Problem: Identify the component modules of 
a network

• Difficulty: definition of module is not precise

• Hierarchical networks have modules at 
multiple scales

• At what scale to define modules?



Conserved modules

• Identify modules in multiple species that have 
“conserved” topology

• Typical approach:

• Use sequence alignment to identify 
homologous proteins and establish 
correspondence between networks

• Using correspondence, output subsets of 
nodes with similar topology



Conserved interactions

• Network comparison 
between species also 
requires sequence 
comparison

• Protein sets compared 
to identify orthologs

• Common technique: 
highest scoring BLAST 
hits used for establishing 
correspondences

Y

X

B

A

human yeast

orthologs

interologs

interaction



Conserved modules

• Conserved module: orthologous 
subnetwork with significantly similar edge 
presence/absence

Y

X

Z

W
C

A

B

D

humanyeast



Comparative network analysis

• Compare networks from different...

• interaction detection methods

• yeast 2-hybrid, mass spectrometry, etc.

• conditions

• heat, media, other stresses

• time points

• development, cell cycle

• species



Comparative tasks

• Integration

• Combine networks derived from different 
methods (e.g. experimental data types)

• Alignment

• Identify nodes, edges, modules common to 
two networks (e.g., from different species)

• Database query

• Identify subnetworks similar to query in 
database of networks



Network alignment graph

• Analogous to pairwise sequence alignment
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Conserved module detection
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involving either two genes or two proteins in one species and their best 
sequence matches in another species. Beyond alignment of single inter-
actions, it is possible to envisage a whole array of network structures 
that might be conserved between two protein networks. For instance, 
conserved linear paths may correspond to signaling pathways, and con-
served clusters of interactions may be indicative of protein complexes. 
In certain cases, for example, when the two networks being compared 
represent linear chains of interactions24, the network alignment problem 
admits efficient algorithmic solutions. In general, the problem is com-
putationally hard (generalizing subgraph isomorphism under certain 
formulations), but heuristic approaches have been devised for it (e.g., 
Berg & Lassig25).

One heuristic approach creates a merged representation of the two 
networks being compared, called a network alignment graph, and then 
applies a greedy algorithm for identifying the conserved subnetworks 
embedded in the merged representation. In a network alignment graph, 
the nodes represent sets of molecules, one from each network, and the 
links represent conserved molecular interactions across the different net-
works (Fig. 1). The alignment is particularly simple when there exists a 
one-to-one correspondence between molecules across the two networks, 
but in general there may be a complex many-to-many correspondence.

A network alignment graph facilitates the search for conserved 
network regions, as these will appear as subnetworks with specific 

structure. For instance, conserved protein complexes might appear as 
clusters of densely interacting nodes. This technique was first used by 
Ogata et al.26, who searched for correspondences between the reactions 
of specific metabolic pathways and the genomic locations of the genes 
encoding the enzymes catalyzing those reactions. Their network align-
ment graph combined the genome ordering information, represented 
as a network of genes arranged in a linear (or circular) path, with a 
network of successive enzymes in metabolic pathways. Single-linkage 
clustering was applied to this graph to identify pathways for which the 
enzymes clustered along the genome (Fig. 2a).

Kelley et al.18 applied the concept of network alignment to the study 
of protein interaction networks. They translated the problem of find-
ing conserved pathways to that of finding high-scoring paths in the 
alignment graph. Their algorithm, PathBLAST, identified five regions 
that were conserved across the protein networks of Saccharomyces 
cerevisiae and Helicobacter pylori. This comparison was later extended 
to detect conserved protein clusters rather than paths27, employing a 
likelihood-based scoring scheme that weighs the denseness of a given 
subnetwork versus the chance of observing such topology at random 
(Box 1). The latter approach was recently used by Suthram et al.28 to 
show that the protein-protein interaction network of Plasmodium fal-
ciparum differs substantially from those of other eukaryotes. Finally, 
Koyuturk et al.29 developed an evolution-based scoring scheme to 

detect conserved protein clusters, which takes 
into account interaction insertion/deletion 
and protein duplication events (Box 1). Their 
MaWish algorithm was applied to detect 
human-mouse conserved subnetworks.

The methodology of network align-
ment can also be applied to predict vari-
ous properties of genes and proteins on a 
global scale. First and foremost, a conserved 
subnetwork that contains many proteins of 
the same known function suggests that the 
remaining proteins also have that function. 
We have recently used this concept to pre-
dict thousands of new protein functions for 
yeast, worm (Caenorhabditis elegans) and fly 
(Drosophila melanogaster), with an estimated 
success rate of 58–63% (ref. 13). More com-
plex relationships, such as protein interac-
tions, functional orthology and links between 
cellular processes, can also be inferred from 
the network alignment13,30,31.

Multiple network alignment
The generalization of the network alignment 
process to more than two networks entails 
devising an appropriate scoring scheme and 

Table 1  Modes of network comparison
Mode Common application Main goals Some current limitations

Alignment At least two networks of the same type across 
species

Identification of functional (conserved) protein 
modules; study of network evolution; interaction 
prediction

Limited to few (five or fewer) species; nonevolu-
tion-based scores

Integration At least two networks of different types for the 
same species

Identification of modules (supported by several 
networks); study of interrelations between data 
types; interaction prediction

No agreed-upon way to combine scores over dif-
ferent networks

Querying Subnetwork module versus a network Identification of duplicated/conserved instances 
of the module; knowledge transfer

Query is limited to a tree topology; nonevolution-
based scores

Conserved
interactions

Matched
protein pairs

High-scoring
conserved subnetworks

Search
algorithm

Matched proteins
Match protein pairs that are
sequence-similar

Species 1
(Condition/type 1)

Species 2
(Condition/type 2)

Network alignment
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Figure 1  Network alignment. Network alignment combines protein interaction data that are available 
for each of at least two species with orthology information based on the corresponding protein 
sequences. A detailed probabilistic model is used to identify protein subnetworks within the aligned 
network that are conserved across the species. Each node in this aligned network represents a set of 
sequence-similar proteins (one from each species) and each link represents a conserved interaction. 
Other than species, the networks being compared can also be sampled across different biological 
conditions or interaction types.

REV IEW

©
2

0
0
6
 N

a
tu

re
 P

u
b

li
s

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

a
tu

re
.c

o
m

/n
a
tu

re
b

io
te

c
h

n
o

lo
g

y

(Sharan & Ideker, 2006)



Real module example

• Note: a protein may have more than one 
ortholog in another network

Prediction of Protein Interactions. We also used the multiple network
alignment to predict protein–protein physical interactions. We
predicted an interaction between a pair of proteins based on (i)

evidence that proteins with similar sequences interact within other
species (directly or by a common network neighbor) and, optionally,
(ii) cooccurrence of these proteins in the same conserved cluster or

Fig. 2. Representative conserved network regions. Shown are conserved clusters (a–k) and paths (l and m) identified within the networks of yeast, worm, and
fly. Each region contains one or more overlapping clusters or paths (see Fig. 3). Proteins from yeast (orange ovals), worm (green rectangles), or fly (blue hexagons)
are connected by direct (thick line) or indirect (connection via a common network neighbor; thin line) protein interactions. Horizontal dotted gray links indicate
cross-species sequence similarity between proteins (similar proteins are typically placed on the same row of the alignment). Automated layout of network
alignments was performed by using a specialized plug-in to the CYTOSCAPE software (34) as described in Supporting Text.

1976 ! www.pnas.org"cgi"doi"10.1073"pnas.0409522102 Sharan et al.

yeast worm fly

Module for RNA metabolism (Sharan et al., 2005)



Basic alignment strategy

• Define scoring function on subnetworks

• high score ⇒ conserved module

• Use BLAST to infer orthologous proteins

• Identify “seeds” around each protein: small 
conserved subnetworks centered around 
the protein

• Grow seeds by adding proteins that increase 
alignment score



Scoring functions via Subnetwork modeling

• We wish to calculate the likelihood of a  
certain subnetwork U under different models

• Subnetwork model (Ms)

• Connectivity of U given by target graph 
H, each edge in H appearing in U with 
probability β (large)

• Null model (Mn)

• Each edge appears with probability 
according to random graph distribution 
(but with degree distribution fixed)

 (Sharan et al., 2005)



Noisy observations

• Typically weight edges in graph according to 
confidence in interaction (expressed as a 
probability)

• Let

• Tuv: event that proteins u, v interact

• Fuv: event that proteins u, v do not interact

• Ouv: observations of possible interactions 
between proteins u and v



Subnetwork model probability
• Assume (for explanatory purposes) that 

subnetwork model is a clique:

Pr(OU |Ms) =
�

(u,v)⇥U�U

Pr(Ouv|Ms)

=
�

(u,v)⇥U�U

[Pr(Ouv|Tuv,Ms)Pr(Tuv|Ms) + Pr(Ouv|Fuv,Ms)Pr(Fuv|Ms)]

=
�

(u,v)⇥U�U

[�Pr(Ouv|Tuv) + (1� �)Pr(Ouv|Fuv)]



Null model probability

• Given values for puv: probability of edge (u,v) 
in random graph with same degrees

• How to get random graph if we don’t know 
true degree distribution?  Estimate them:

Pr(OU |Mn) =
�

(u,v)⇥U�U

[puvPr(Ouv|Tuv) + (1� puv)Pr(Ouv|Fuv)]

di =
�

j

Pr(Tij |Oij)

Pr(Tuv|Ouv) =
Pr(Ouv|Tuv)Pr(Tuv)

Pr(Ouv|Tuv)Pr(Tuv) + Pr(Ouv|Fuv)(1� Pr(Tuv))



Likelihood ratio

• Score subnetwork with (log) ratio of 
likelihoods under the two models

• Note the decomposition into sum of scores 
for each edge

L(U) = log
Pr(OU |Ms)
Pr(OU |Mn)

=
�

(u,v)⇥U�U

log
�Pr(Ouv|Tuv) + (1� �)Pr(Ouv|Fuv)

puvPr(Ouv|Tuv) + (1� puv)Pr(Ouv|Fuv)



Seed construction

• Finding “heavy induced subgraphs” is NP-
hard (Sharan et al., 2004)

• Heuristic:

• Find high-scoring subgraph “seeds”

• Grow seeds greedily

• Seed techniques: for each node v:

• Find heavy subgraph of size 4 including v

• Find highest-scoring length 4 path with v



Randomizing graphs

• For statistical tests, need to keep degree 
distribution the same

• Shuffle step:

• Choose two edges (a,b), (c,d) in the 
current graph

• Remove those edges

• Add edges (a,d), (c,b)

C

A

B

D C

A

B

D



Predictions from alignments

• Conserved modules of proteins enriched for 
certain functions often indicate shared function 
of other proteins

• Use to predict function of unannotated 
proteins

• Sharan et al., 2005: annotated 4,645 proteins 
with estimated accuracy of 58-63%

• Predict missing interactions

• Sharan et al., 2005: 2,609 predicted 
interactions in fly, 40 –52% accurate



Parallels to sequence analysis
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Network querying
Network alignment and integration are focused 
on de novo discovery of biologically significant 
regions embedded in a network, based on the 
assumption that regions supported by multiple 
networks are functional. In contrast, a super-
vised approach to the module detection problem 
relies on a query subnetwork that is previously 
known to be functional. The goal is to identify 
subnetworks in a given network that are similar 
to the query. Kelley et al.18 approached the query 
problem in the context of the PathBLAST net-
work alignment algorithm, by designating one 
of the networks as the query. When PathBLAST 
is applied in this setting, it identifies all matches 
to the query in the network under study. As in 
the comparison case, the treatment here is only 
in queries that take the form of a linear path of 
interacting proteins.

Recently, Pinter et al.44 devised an algorithm 
for querying metabolic networks. Their algo-
rithm allows querying metabolic pathways that 
take the form of a tree within a collection of 
such pathways. Figure 2d shows an example of 
their approach: here, a query of a core pathway 
revealed an allantoin degradation pathway in E. 
coli and a ureide degradation pathway in yeast.

Network querying tools are still at an early 
stage and are currently limited to sparse topolo-
gies, such as paths and trees. Approaches to handle more general queries 
could benefit from the rich literature on graph mining techniques in the 
data mining community31,45.

Network evolution
Understanding how networks evolve is a fundamental issue, which affects 
each of the above analysis modes as well as the study of networks in gen-
eral. Two kinds of processes have been invoked to explain network evolu-
tion. The first consists of sequence mutations in a gene, which result in 
modifications of the interface between interacting proteins46 (Fig. 3a). 
Consequently, the corresponding protein may gain new connections 
(attachment) or lose (detachment) some of the existing connections to 
other proteins. The second type of evolutionary process consists of gene 
duplication, followed by either silencing of one of the duplicated genes 
or by functional divergence of the duplicates (Fig. 3b). In terms of the 
network, a gene duplication corresponds to the addition of a node with 
links identical to the original node, followed by the divergence of some 
of the redundant links between the two duplicate nodes.

Berg et al.47 referred to link attachment and detachment processes 
collectively as link dynamics. They estimated the empirical rates of link 
dynamics and gene duplication in the yeast protein network, finding the 
former to be at least one order of magnitude higher than the latter. Based 
on this observation, they proposed a model for the evolution of pro-
tein networks in which link dynamics are the major evolutionary forces 
shaping the topology of the network, whereas slower gene duplication 
processes mainly affect its size. Rzhetsky & Gomez48 formulated a model 
that uses these two evolutionary processes, but whose underlying basic 
elements are domains rather than whole proteins. Barabasi & Albert49 
suggested gene duplication as the major mechanism for generating the 
scale-free topology of protein interaction networks. Their network 
growth model predicts that molecules that appeared early in the network 
are the most connected ones. Several lines of empirical evidence sup-

port this hypothesis: metabolites of some of the most ancient pathways, 
such as glycolysis and the tricarboxylic acid cycle, are among the most 
connected substrates in metabolic networks50; for protein interaction 
networks, one observes a positive correlation between the evolutionary 
age of a protein and its degree of connectivity51.

Network comparison: the next ten years?
Notwithstanding the recent advances, the field of network comparison 
is still very young. However, by exploiting the close analogy to sequence 
comparison, one can envision some of the key milestones  on the road 
ahead (Fig. 4). Methods for sequence comparison have been the main 
focus of bioinformatics for most of its history, starting in 1970 with 
the publication of the first comparison algorithm by Needleman & 
Wunsch52. Since that initial work, major advances have included bet-
ter alignment score functions to more accurately reflect evolutionary 
distance, methods for multiple sequence alignment and numerous opti-
mizations to the search algorithm (Fig. 4). In recent years, the develop-
ment of sequence analysis tools has been largely driven by the immense 
amounts of data emerging from the human genome53,54 and other 
sequencing projects.

Unlike the more mature field of sequence alignment, network 
alignment has a conceptual framework and several proof-of-prin-
ciple studies, but relatively little in terms of advanced computational 
methodology. Nevertheless, it is exciting that virtually all of the major 
advances that occurred for sequence alignment can be envisioned 
for network alignment. For instance, a clear parallel goal is to prog-
ress from pairwise to multiple alignment of networks. At present, 
a method for three-species network alignment has been described 
(see above discussion of Sharan et al.13), but this algorithm scales 
poorly with the number of networks/species and may reach a practi-
cal limit at four or five. As yet another example, save perhaps a single 
study29, the score functions for assessing network similarity are not 

Biological sequence comparison
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Figure 4  Parallels between sequence and network comparison on a timeline. The recent and possibly 
future developments in methods for network comparison are shown in the context of the analogous 
developments as they occurred in the field of sequence comparison. General milestones for both fields 
are shown in the middle (gray box), with the specific instances for sequence versus network comparison 
appearing directly above or below, respectively.
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