Comparative Network Analysis

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2012
Colin Dewey
cdewey@biostat.wisc.edu

Protein-protein Interaction Networks

Overview

- Experimental techniques for determining networks
- Properties of biological networks
- Comparative network tasks

Experimental techniques

- Yeast two-hybrid system
 - Protein-protein interactions
- Microarrays
 - Expression patterns of mRNAs
 - Similar patterns imply involvement in same regulatory or signaling network
- Knock-out studies
 - Identify genes required for synthesis of certain molecules

Yeast two-hybrid system

A. DNA binding domain fusion

B. Activation domain fusion

C. Active transcription factor

Microarrays

Knock-out studies

Yeast with one gene deleted Growth?

Rich media Growth?

His media

Topological properties of networks

- Degree: number of edges in/out of a node
 - Average degree
 - Degree distribution: P(k), fraction of nodes with degree k
- Clustering coefficient: measure of grouping in graph
- Path length: shortest path between two nodes
 - Average path length

Clustering coefficient

$$C_i = \frac{2n_i}{k_i(k_i - 1)}$$

 C_i : clustering coefficient of node i

 n_i : number of edges between neighbors of node i (number of triangles involving node i)

 k_i : degree of node i

Interesting to look at C(k): average clustering coefficient of nodes with degree k

Erdös & Rényi random graphs

- Erdös & Rényi (1960): On the evolution of random graphs
- Construction
 - Start with N vertices, zero edges
 - Add each possible edge with probability p
- Expected number of edges: pN(N 1)/2
- Expected degree: p(N-I)

Properties of ER graphs

- Degree of nodes ~ Poisson distribution
- Most nodes have degree close to average degree
- Average path length ~ log n
- Clustering coefficient does not depend on degree k

$$P(k) \approx \frac{e^{-\lambda} \lambda^k}{k!}$$
$$\lambda = p(N-1)$$

Scale-free networks

- Barabási & Albert (1999): Emergence of scaling in random networks
- Random construction:
 - Start with a few connected nodes
 - Add nodes one at a time
 - Add m edges between new node and previous nodes
 - For each edge, probability of being incident to node i is k_i

$$\frac{\kappa_i}{\sum_j k_j}$$
 degree of node j

Properties of scale-free networks

- Degrees:
 - $P(k) \sim k^{-\gamma}$ (power law distribution)
 - Most nodes have very small degree
 - A few nodes (hubs) with large degree
- Average path length ~ log log n
- Flat C(k)
- Properties depend on value of γ

Hierarchical network

- Recursive generation
- Scale-free
- Clustering coefficient dependent on degree: C(k) ~ k⁻¹

(Barabási & Oltvai, 2004)

Classifying networks

- Metabolic networks
 - scale-free
- PPI networks
 - scale-free
- Regulatory networks
 - mixed
 - out-degree of transcription factors is scale-free
 - in-degree of regulated genes is exponential

Paths in biological networks

- Path length between two vertices is often very small
- random graph gives expected path length as log N
- scale-free graph has log log N expected path length
- However, hubs not often connected to each other: disassortative

Small-world networks

- Small-world networks are graphs with small average path length
- ER graphs are small-world: log n average path length
- Scale-free graphs often very small: log log n (for some values of Y)
- However, biological networks are both small-world and disassortative: hubs are not often connected to each other

Evolving networks

- Growth
 - Early nodes have more links
- Preferential attachment
 - As new nodes added, more likely to be connected to already highly-connected nodes
 - Leads to scale-free networks
- Gene duplication
 - Major force in protein network evolution
 - Highly-connected nodes more likely to have neighbors duplicate and add more edges

Network problems

- Network inference
 - Given raw experimental data
 - Infer network structure
- Motif finding
 - Identify common subgraph topologies
- Module detection
 - Identify subgraphs that perform same function
- Conserved modules
 - Identify modules that are shared in networks of multiple species

Network motifs

- Problem: Find subgraph topologies that are statistically more frequent than expected
- Brute force approach
 - Count all topologies of subgraphs of size m
 - Randomize graph (retain degree distribution) and count again
 - Output topologies that are over/under represented

Network modules

- Modules: dense (highly-connected) subgraphs (e.g., large cliques or partially incomplete cliques)
- Problem: Identify the component modules of a network
- Difficulty: definition of module is not precise
 - Hierarchical networks have modules at multiple scales
 - At what scale to define modules?

Conserved modules

- Identify modules in multiple species that have "conserved" topology
- Typical approach:
 - Use sequence alignment to identify homologous proteins and establish correspondence between networks
 - Using correspondence, output subsets of nodes with similar topology

Conserved interactions

- Network comparison between species also requires sequence comparison
- Protein sets compared to identify orthologs
- Common technique: highest scoring BLAST hits used for establishing correspondences

Conserved modules

 Conserved module: orthologous subnetwork with significantly similar edge presence/absence

Comparative network analysis

- Compare networks from different...
 - interaction detection methods
 - yeast 2-hybrid, mass spectrometry, etc.
 - conditions
 - heat, media, other stresses
 - time points
 - development, cell cycle
 - species

Comparative tasks

- Integration
 - Combine networks derived from different methods (e.g. experimental data types)
- Alignment
 - Identify nodes, edges, modules common to two networks (e.g., from different species)
- Database query
 - Identify subnetworks similar to query in database of networks

Network alignment graph

Analogous to pairwise sequence alignment

Conserved module detection

Real module example

Module for RNA metabolism (Sharan et al., 2005)

 Note: a protein may have more than one ortholog in another network

Basic alignment strategy

- Define scoring function on subnetworks
 - high score ⇒ conserved module
- Use BLAST to infer orthologous proteins
- Identify "seeds" around each protein: small conserved subnetworks centered around the protein
- Grow seeds by adding proteins that increase alignment score

Scoring functions via Subnetwork modeling

- We wish to calculate the likelihood of a certain subnetwork U under different models
 - Subnetwork model (M_s)
 - Connectivity of U given by target graph H, each edge in H appearing in U with probability β (large)
 - Null model (M_n)
 - Each edge appears with probability according to random graph distribution (but with degree distribution fixed)

Noisy observations

- Typically weight edges in graph according to confidence in interaction (expressed as a probability)
- Let
 - T_{uv}: event that proteins u, v interact
 - F_{uv}: event that proteins u, v do not interact
 - O_{uv}: observations of possible interactions between proteins u and v

Subnetwork model probability

 Assume (for explanatory purposes) that subnetwork model is a clique:

$$Pr(O_{U}|M_{s}) = \prod_{(u,v)\in U\times U} Pr(O_{uv}|M_{s})$$

$$= \prod_{(u,v)\in U\times U} [Pr(O_{uv}|T_{uv},M_{s})Pr(T_{uv}|M_{s}) + Pr(O_{uv}|F_{uv},M_{s})Pr(F_{uv}|M_{s})]$$

$$= \prod_{(u,v)\in U\times U} [\beta Pr(O_{uv}|T_{uv}) + (1-\beta)Pr(O_{uv}|F_{uv})]$$

Null model probability

 Given values for p_{uv}: probability of edge (u,v) in random graph with same degrees

$$Pr(O_U|M_n) = \prod_{(u,v)\in U\times U} [p_{uv}Pr(O_{uv}|T_{uv}) + (1-p_{uv})Pr(O_{uv}|F_{uv})]$$

 How to get random graph if we don't know true degree distribution? Estimate them:

$$d_i = \sum_{j} Pr(T_{ij}|O_{ij})$$

$$Pr(T_{uv}|O_{uv}) = \frac{Pr(O_{uv}|T_{uv})Pr(T_{uv})}{Pr(O_{uv}|T_{uv})Pr(T_{uv}) + Pr(O_{uv}|F_{uv})(1 - Pr(T_{uv}))}$$

Likelihood ratio

 Score subnetwork with (log) ratio of likelihoods under the two models

$$L(U) = \log \frac{Pr(O_U|M_s)}{Pr(O_U|M_n)}$$

$$= \sum_{(u,v)\in U\times U} \log \frac{\beta Pr(O_{uv}|T_{uv}) + (1-\beta)Pr(O_{uv}|F_{uv})}{p_{uv}Pr(O_{uv}|T_{uv}) + (1-p_{uv})Pr(O_{uv}|F_{uv})}$$

 Note the decomposition into sum of scores for each edge

Seed construction

- Finding "heavy induced subgraphs" is NPhard (Sharan et al., 2004)
- Heuristic:
 - Find high-scoring subgraph "seeds"
 - Grow seeds greedily
- Seed techniques: for each node v:
 - Find heavy subgraph of size 4 including v
 - Find highest-scoring length 4 path with v

Randomizing graphs

- For statistical tests, need to keep degree distribution the same
- Shuffle step:
 - Choose two edges (a,b), (c,d) in the current graph
 - Remove those edges
 - Add edges (a,d), (c,b)

Predictions from alignments

- Conserved modules of proteins enriched for certain functions often indicate shared function of other proteins
 - Use to predict function of unannotated proteins
 - Sharan et al., 2005: annotated 4,645 proteins with estimated accuracy of 58-63%
- Predict missing interactions
 - Sharan et al., 2005: 2,609 predicted interactions in fly, 40 –52% accurate

Parallels to sequence analysis

