Comparative Network Analysis

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2012
Colin Dewey
cdewey@biostat.wisc.edu
Protein-protein Interaction Networks

- Yeast protein interactions from yeast two-hybrid experiments
- Largest cluster in network contains 78% of proteins

Knock-out phenotype
- red: lethal
- green: non-lethal
- orange: slow growth
- yellow: unknown

(Jeong et al., 2001, Nature)
Overview

- Experimental techniques for determining networks
- Properties of biological networks
- Comparative network tasks
Experimental techniques

- Yeast two-hybrid system
- Protein-protein interactions
- Microarrays
 - Expression patterns of mRNAs
 - Similar patterns imply involvement in same regulatory or signaling network
- Knock-out studies
 - Identify genes required for synthesis of certain molecules
Yeast two-hybrid system

A. DNA binding domain fusion

B. Activation domain fusion

C. Active transcription factor

(Stephens & Banting, 2000, Traffic)
Microarrays

(Eisen et al., 1998, PNAS)
Knock-out studies

Yeast with one gene deleted

Rich media

Growth?

His- media
Topological properties of networks

- Degree: number of edges in/out of a node
- Average degree
- Degree distribution: $P(k)$, fraction of nodes with degree k
- Clustering coefficient: measure of grouping in graph
- Path length: shortest path between two nodes
- Average path length
Clustering coefficient

\[C_i = \frac{2n_i}{k_i(k_i - 1)} \]

\(C_i \): clustering coefficient of node \(i \)

\(n_i \): number of edges between neighbors of node \(i \)

(number of triangles involving node \(i \))

\(k_i \): degree of node \(i \)

Interesting to look at \(C(k) \): average clustering coefficient of nodes with degree \(k \)
Erdös & Rényi random graphs

• Erdös & Rényi (1960): *On the evolution of random graphs*

• Construction
 • Start with N vertices, zero edges
 • Add each possible edge with probability p
 • Expected number of edges: $pN(N - 1)/2$
 • Expected degree: $p(N-1)$
Properties of ER graphs

- Degree of nodes ~ Poisson distribution
- Most nodes have degree close to average degree
- Average path length ~ log n
- Clustering coefficient does not depend on degree k

\[P(k) \approx \frac{e^{-\lambda} \lambda^k}{k!} \]
\[\lambda = p(N - 1) \]

(Barabási & Oltvai, 2004)
Scale-free networks

- Barabási & Albert (1999): *Emergence of scaling in random networks*

- Random construction:
 - Start with a few connected nodes
 - Add nodes one at a time
 - Add m edges between new node and previous nodes
 - For each edge, probability of being incident to node i is
 $$\frac{k_i}{\sum_j k_j}$$
 where k_j is the degree of node j
Properties of scale-free networks

- Degrees:
 - \(P(k) \sim k^{-\gamma} \) (power law distribution)
 - Most nodes have very small degree
 - A few nodes (hubs) with large degree
- Average path length \(\sim \log \log n \)
- Flat \(C(k) \)
- Properties depend on value of \(\gamma \)

(Barabási & Oltvai, 2004)
Hierarchical network

- Recursive generation
- Scale-free
- Clustering coefficient dependent on degree: $C(k) \sim k^{-1}$

(Barabási & Oltvai, 2004)
Classifying networks

- Metabolic networks
 - scale-free
- PPI networks
 - scale-free
- Regulatory networks
 - mixed
 - out-degree of transcription factors is scale-free
 - in-degree of regulated genes is exponential
Paths in biological networks

• Path length between two vertices is often very small

• random graph gives expected path length as $\log N$

• scale-free graph has $\log \log N$ expected path length

• However, hubs not often connected to each other: disassortative
Small-world networks

• Small-world networks are graphs with small average path length

• ER graphs are small-world: log n average path length

• Scale-free graphs often very small: log log n (for some values of γ)

• However, biological networks are both small-world and disassortative: hubs are not often connected to each other
Evolving networks

- Growth
 - Early nodes have more links
- Preferential attachment
 - As new nodes added, more likely to be connected to already highly-connected nodes
 - Leads to scale-free networks
- Gene duplication
 - Major force in protein network evolution
 - Highly-connected nodes more likely to have neighbors duplicate and add more edges
Network problems

- Network inference
 - Given raw experimental data
 - Infer network structure
- Motif finding
 - Identify common subgraph topologies
- Module detection
 - Identify subgraphs that perform same function
- Conserved modules
 - Identify modules that are shared in networks of multiple species
Network motifs

- Problem: Find subgraph topologies that are statistically more frequent than expected
- Brute force approach
 - Count all topologies of subgraphs of size m
 - Randomize graph (retain degree distribution) and count again
 - Output topologies that are over/under represented

Feed-forward loop: over-represented in regulatory networks

not very common
Network modules

• Modules: dense (highly-connected) subgraphs (e.g., large cliques or partially incomplete cliques)

• Problem: Identify the component modules of a network

• Difficulty: definition of module is not precise
 • Hierarchical networks have modules at multiple scales
 • At what scale to define modules?
Conserved modules

- Identify *modules* in multiple species that have “conserved” topology

- Typical approach:
 - Use sequence alignment to identify homologous proteins and establish correspondence between networks
 - Using correspondence, output subsets of nodes with similar topology
Conserved interactions

- Network comparison between species also requires sequence comparison
- Protein sets compared to identify orthologs
- Common technique: highest scoring BLAST hits used for establishing correspondences
Conserved modules

- Conserved module: orthologous subnetwork with significantly similar edge presence/absence
Comparative network analysis

- Compare networks from different...
 - interaction detection methods
 - yeast 2-hybrid, mass spectrometry, etc.
 - conditions
 - heat, media, other stresses
 - time points
 - development, cell cycle
 - species
Comparative tasks

• Integration
 • Combine networks derived from different methods (e.g. experimental data types)

• Alignment
 • Identify nodes, edges, modules common to two networks (e.g., from different species)

• Database query
 • Identify subnetworks similar to query in database of networks
Network alignment graph

Analogous to pairwise sequence alignment

• Analogous to pairwise sequence alignment
Conserved module detection

Species 1 (Condition/type 1)
Species 2 (Condition/type 2)

Matched proteins
Match protein pairs that are sequence-similar
PKSDIDVDLCSELMAKACSE-GV
PKS +D+DLCELI+ KAC++ +
PKSSLIDLDLCELI1IKACTDCKI

Network alignment
Conserved interactions
Matched protein pairs

High-scoring conserved subnetworks

Search algorithm

(Sharan & Ideker, 2006)
Real module example

Module for RNA metabolism (Sharan et al., 2005)

• Note: a protein may have more than one ortholog in another network
Basic alignment strategy

• Define scoring function on subnetworks
 • high score ⇒ conserved module

• Use BLAST to infer orthologous proteins

• Identify “seeds” around each protein: small conserved subnetworks centered around the protein

• Grow seeds by adding proteins that increase alignment score
Scoring functions via Subnetwork modeling

• We wish to calculate the likelihood of a certain subnetwork U under different models

• Subnetwork model (M_s)
 • Connectivity of U given by target graph H, each edge in H appearing in U with probability β (large)

• Null model (M_n)
 • Each edge appears with probability according to random graph distribution (but with degree distribution fixed)

(Sharan et al., 2005)
Noisy observations

• Typically weight edges in graph according to confidence in interaction (expressed as a probability)

• Let

 • T_{uv}: event that proteins u, v interact

 • F_{uv}: event that proteins u, v do not interact

 • O_{uv}: observations of possible interactions between proteins u and v
Subnetwork model probability

- Assume (for explanatory purposes) that subnetwork model is a clique:

\[
Pr(O_U | M_s) = \prod_{(u,v) \in U \times U} Pr(O_{uv} | M_s) \\
= \prod_{(u,v) \in U \times U} [Pr(O_{uv} | T_{uv}, M_s)Pr(T_{uv} | M_s) + Pr(O_{uv} | F_{uv}, M_s)Pr(F_{uv} | M_s)] \\
= \prod_{(u,v) \in U \times U} [\beta Pr(O_{uv} | T_{uv}) + (1 - \beta) Pr(O_{uv} | F_{uv})]
\]
Null model probability

• Given values for p_{uv}: probability of edge (u,v) in random graph with same degrees

\[
Pr(O_U|M_n) = \prod_{(u,v) \in U \times U} \left[p_{uv}Pr(O_{uv}|T_{uv}) + (1 - p_{uv})Pr(O_{uv}|F_{uv}) \right]
\]

• How to get random graph if we don’t know true degree distribution? Estimate them:

\[
d_i = \sum_j Pr(T_{ij}|O_{ij})
\]

\[
Pr(T_{uv}|O_{uv}) = \frac{Pr(O_{uv}|T_{uv})Pr(T_{uv})}{Pr(O_{uv}|T_{uv})Pr(T_{uv}) + Pr(O_{uv}|F_{uv})(1 - Pr(T_{uv}))}
\]
Likelihood ratio

• Score subnetwork with (log) ratio of likelihoods under the two models

\[L(U) = \log \frac{Pr(O_U|M_s)}{Pr(O_U|M_n)} \]

\[= \sum_{(u,v) \in U \times U} \log \frac{\beta Pr(O_{uv}|T_{uv}) + (1 - \beta) Pr(O_{uv}|F_{uv})}{p_{uv} Pr(O_{uv}|T_{uv}) + (1 - p_{uv}) Pr(O_{uv}|F_{uv})} \]

• Note the decomposition into sum of scores for each edge
Seed construction

• Finding “heavy induced subgraphs” is NP-hard (Sharan et al., 2004)

• Heuristic:
 • Find high-scoring subgraph “seeds”
 • Grow seeds greedily

• Seed techniques: for each node v:
 • Find heavy subgraph of size 4 including v
 • Find highest-scoring length 4 path with v
Randomizing graphs

• For statistical tests, need to keep degree distribution the same

• Shuffle step:
 • Choose two edges (a,b), (c,d) in the current graph
 • Remove those edges
 • Add edges (a,d), (c,b)
Predictions from alignments

• Conserved modules of proteins enriched for certain functions often indicate shared function of other proteins

• Use to predict function of unannotated proteins

• Sharan et al., 2005: annotated 4,645 proteins with estimated accuracy of 58-63%

• Predict missing interactions

• Sharan et al., 2005: 2,609 predicted interactions in fly, 40 –52% accurate
Parallels to sequence analysis

(Sharan & Ideker, 2006)