Advanced Bioinformatics

Biostatistics & Medical Informatics 776 Computer Sciences 776 Spring 2012

Colin Dewey

Dept. of Biostatistics & Medical Informatics

Dept. of Computer Sciences

cdewey@biostat.wisc.edu

www.biostat.wisc.edu/bmi776/

Agenda Today

- course information
- overview of topics
- introductions

Course Web Site

- www.biostat.wisc.edu/bmi776/
- syllabus
- readings
- tentative schedule
- lecture slides in PDF
- homework
- mailing list archive
- etc.

Your Instructor: Colin Dewey

- email: cdewey@biostat.wisc.edu
- office hours: Wed 9:30-10:30am, Thu 11:00am-12:00pm room 5785, Medical Sciences Center
- my home department is Biostatistics & Medical Informatics, and I have an affiliate appointment in Computer Sciences
- research interests: probabilistic modeling, biological sequence evolution, analysis of "next-generation" sequencing data (RNA-Seq in particular)

Finding My Office: 5785 Medical Sciences Center

- confusing building
- best bet: enter at door marked 420 North Charter

Course Requirements

- 4 or so homework assignments: ~20%
 - written exercises
 - programming (in Java, C++, C, Perl, Python) + computational experiments (e.g. measure the effect of varying parameter x in algorithm y)
- 4 or so paper critiques: ~20%
 - major strength of approach
 - major weakness
 - what would you do next
- project: ~25%
- final exam: ~ 25%
- class participation: ~10%

Participation

- take advantage of the small class size!
- do the assigned readings
- show up to class
- don't be afraid to ask questions

Course Readings

- mostly articles from the primary literature (scientific journals, etc.)
- must be using a UW IP address to download some of the articles (can use WiscVPN "On Campus" profile)
- Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Cambridge University Press, 1998.

Computing Resources for the Class

- Linux workstations in Dept. of Biostatistics & Medical Informatics
 - no "lab", must log in remotely
 - most of you have accounts?
 - two machines
 mi1.biostat.wisc.edu
 mi2.biostat.wisc.edu
- CS department usually offers UNIX orientation sessions at beginning of semester
- the "CS 1000" UNIX tutorial
 - online at http://www.cs.wisc.edu/csl/cs1000/

The Class Mailing List

- bmi776-1-s12@lists.wisc.edu
- you will be automatically subscribed
- check your mail daily or have it forwarded to an account where you do
 - mailing list has your @wisc.edu address

What you should get out of this course

- An understanding of the major problems in computational molecular biology
- Familiarity with the algorithms and statistical techniques for addressing these problems
- At the end you should be able to:
 - Read the bioinformatics literature
 - Apply the methods you have learned to other problems both within and outside of bioinformatics

Major Topics to be Covered (the task perspective)

- modeling of motifs and cis-regulatory modules
- identification of transcription factor binding sites
- gene finding
- transcriptome quantification and assembly
- RNA sequence and structure modeling
- modeling biological sequence evolution
- large-scale and whole-genome sequence alignment
- modeling the evolution of cellular networks
- protein structure prediction
- biomedical text mining
- genotype analysis and association studies

Major Topics to be Covered (the algorithms perspective)

- Gibbs sampling and EM
- HMM structure search
- duration modeling and semi-Markov models
- pairwise HMMs
- interpolated Markov models and back-off methods
- parametric alignment
- tries and suffix trees
- sparse dynamic programming
- Markov random fields
- stochastic context free grammars
- Bayesian networks
- branch and bound search
- conditional random fields
- etc.

Motif and CRM Modeling

What sequence motifs do these promoter regions have in common?

Experimental binding site prediction with secondgeneration sequencing data (ChIP-Seq)

(Park, Nat Rev Genet, 2009)

Gene Finding

Where are the genes in this genome, and what is the structure of each gene?

Transcriptome analysis with RNA-Seq

Modeling biological sequence evolution

Large Scale Sequence Alignment

What is the best alignment of these 5 genomes?

RNA Sequence and Structure Modeling

Given a genome, how can we identify sequences that encode this RNA structure?

Modeling cellular network evolution

G RNA metabolism

Protein Structure Prediction

Can we predict the 3D shape of a protein from its sequence?

Biomedical Text Mining

Biomedical Text Mining

gene: FUT 4

GO concept: protein amino-acid glycosylation

Genome-wide Association Studies

Which genes are involved in diabetes?

Type 2 diabetes association P values by chromosome (386,731 markers). The x-axis is the genomic position by chromosome 1-22 and X (by color), and the y-axis is the negative base 10 logarithm of the P value.

Reading Assignment

- Bailey and Elkan, ISMB '95
- Lawrence et al., Science '93
- available on the course web site