Alignment of Long Sequences

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2012

Colin Dewey

cdewey@biostat.wisc.edu

Goals for Lecture

the key concepts to understand are the following

- how large-scale alignment differs from the simple case
- the canonical three step approach of large-scale aligners
- using suffix trees to find MUMs (alignment seeds)
- using tries and threaded tries to find alignment seeds
- constrained dynamic programming to align between/ around anchors
- using sparse DP to find a chain of local alignments

Pairwise Large-Scale Alignment: Task Definition

Given

- a pair of large-scale sequences (e.g. chromosomes)
- a method for scoring the alignment (e.g. substitution matrices, insertion/deletion parameters)

Do

 construct global alignment: identify all matching positions between the two sequences

Large Scale Alignment Example:

Mouse Chr6 vs. Human Chr12

Why the Problem is Challenging

- sequences too big to make $O(n^2)$ dynamic-programming methods practical
- long sequences are less likely to be colinear because of rearrangements
 - initially we'll assume colinearity
 - we'll consider rearrangements in next lecture

General Strategy

Figure from: Brudno et al. Genome Research, 2003

 perform pattern matching to find seeds for global alignment

2. find a good chain of anchors

fill in remainder
 with standard but
 constrained
 alignment method

Comparison of Large-Scale Alignment Methods

Method	Pattern matching	Chaining	
MUMmer	suffix tree - MUMs	LIS variant	
AVID	suffix tree - exact & Smith-Watermann variant		
LAGAN	k-mer trie, inexact matches	sparse DP	

The MUMmer System

Delcher et al., Nucleic Acids Research, 1999

Given: genomes *A* and *B*

- find all maximal, unique, matching subsequences (MUMs)
- 2. extract the longest possible set of matches that occur in the same order in both genomes
- 3. close the gaps

Step 1: Finding Seeds in MUMmer

- maximal unique match (MUM):
 - occurs exactly once in both genomes A and B
 - not contained in any longer MUM

Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta Genome B: gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag mismatches

 key insight: a significantly long MUM is certain to be part of the global alignment

Suffix Trees

- substring problem:
 - given text S of length m
 - preprocess S in O(m) time
 - such that, given query string Q of length n, find occurrence (if any) of Q in S in O(n) time
- suffix trees solve this problem, and others

Suffix Tree Definition

- a suffix tree *T* for a string *S* of length *m* is a tree with the following properties:
 - rooted and directed
 - m leaves, labeled 1 to m

key property

- each edge labeled by a substring of S
- concatenation of edge labels on path from root to leaf i is suffix i of S (we will denote this by $S_{i...m}$)
- each internal non-root node has at least two children
- edges out of a node must begin with different characters

Suffixes

```
S = \text{"banana}"
suffixes of S
      $
      a$
      na$
      ana$
      nana$
      anana$
      banana$
```

Suffix Tree Example

S = "banana\$"

 add '\$' to end so that suffix tree exists (no suffix is a prefix of another suffix)

Solving the Substring Problem

- assume we have suffix tree T
- FindMatch(Q, T):
 - follow (unique) path down from root of T according to characters in Q
 - if all of Q is found to be a prefix of such a path
 return label of some leaf below this path
 - else, return no match found

Solving the Substring Problem

MUMs and Generalized Suffix Trees

- build one suffix tree for both genomes A and B
- label each leaf node with genome it represents

MUMs and Suffix Trees

- unique match: internal node with 2 children, leaf nodes from different genomes
- but these matches are not necessarily maximal

MUMs and Suffix Trees

• to identify <u>maximal</u> matches, can compare suffixes following unique match nodes

Using Suffix Trees to Find MUMs

- O(n) time to construct suffix tree for both sequences (of lengths $\leq n$)
- O(n) time to find MUMs one scan of the tree (which is O(n) in size)
- O(n) possible MUMs in contrast to $O(n^2)$ possible exact matches
- main parameter of approach: length of shortest MUM that should be identified (20 – 50 bases)

Step 2: Chaining in MUMmer

- sort MUMs according to position in genome A
- solve variation of Longest Increasing Subsequence
 (LIS) problem to find sequences in ascending order in
 both genomes

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Finding Longest Subsequence

- unlike ordinary LIS problems, MUMmer takes into account
 - lengths of sequences represented by MUMs
 - overlaps
- requires $O(k \log k)$ time where k is number of MUMs

Types of Gaps in a MUMmer Alignment

1. SNP: exactly one base (indicated by ^) differs between the two sequences. It is surrounded by exact-match sequence.

Genome A: cgtcatgggcgttcgtcgttg Genome B: cgtcatgggcattcgtcgttg

2. Insertion: a sequence that occurs in one genome but not the other.

 $\begin{array}{lll} \text{Genome A:} & \operatorname{cggggtaaccgc} \dots \dots \dots \operatorname{cctggtcggg} \\ \text{Genome B:} & \operatorname{cggggtaaccgcgttgctcggggtaaccgccctggtcggg} \end{array}$

3. Highly polymorphic region: many mutations in a short region.

 $\begin{array}{lll} \text{Genome A:} & \texttt{ccgcctcgcctgg.gctggcgcccgctc} \\ \text{Genome B:} & \texttt{ccgcctcgccagttgaccgcgcccgctc} \end{array}$

4. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of the repeat in Genome B is imperfect, containing one mismatch to the other three identical copies.

Genome A: cTGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc Genome B: aTGGGTGGGGCgACGTggggggggggTGGGTGGGACAACGTa

Step 3: Close the Gaps

- SNPs:
 - between MUMs: trivial to detect
 - otherwise: handle like repeats
- inserts
 - transpositions (subsequences that were deleted from one location and inserted elsewhere): look for out-of-sequence MUMs
 - simple insertions: trivial to detect

Step 3: Close the Gaps

- polymorphic regions
 - short ones: align them with dynamic programming method
 - long ones: call MUMmer recursively w/ reduced min MUM length
- repeats
 - detected by overlapping MUMs

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

The LAGAN Method

Brudno et al., Genome Research, 2003

```
Given: genomes A and B
    anchors = find_anchors(A, B)
    step 3: finish global alignment with DP constrained by anchors
find anchors(A, B)
   step 1: find local alignments by matching, chaining k-mer seeds
   step 2: anchors = highest-weight sequence of local alignments
   for each pair of adjacent anchors a_1, a_2 in anchors
      if a_1, a_2 are more than d bases apart
       A', B' = sequences between a_1, a_2
      sub-anchors = find anchors( A', B')
        insert sub-anchors between a_1, a_2 in anchors
    return anchors
```

Step 1a: Finding Seeds in LAGAN

- degenerate k-mers: matching k-long sequences with a small number of mismatches allowed
- by default, LAGAN uses 10-mers and allows 1 mismatch

cacg cgcgctacat acct acta cgcggtacat cgta

Finding Seeds in LAGAN

• example: a *trie* to represent all 3-mers of the sequence

- one sequence is used to build the trie
- the other sequence (the query) is "walked" through to find matching k-mers

Allowing Degenerate Matches

• suppose we're allowing 1 base to mismatch in looking for matches to the 3-mer acc; need to explore green

LAGAN Uses Threaded Tries

• in a threaded trie, each leaf for word $W_1...W_p$ has a back pointer to the node for $W_2...W_p$

Traversing a Threaded Trie

consider traversing the trie to find 3-mer matches for the

 usually requires following only two pointers to match against the next k-mer, instead of traversing tree from root for each

Step 1b: Chaining Seeds in LAGAN

- can chain seeds s₁ and s₂ if
 - the indices of s_1 > indices of s_2 (for both sequences)
 - s₁ and s₂ are near each other
- keep track of seeds in the "search box" as the query sequence is processed

Figure from: Brudno et al. BMC Bioinformatics, 2003

Step 2: Chaining in LAGAN

use sparse dynamic programming to chain local alignments

$$(x,y) \rightarrow (x',y')$$

requires

$$x < x'$$

 $y < y'$

Each local alignment has a weight

FIND the chain with highest total weight

Sparse DP for rectangle chaining

- 1,..., N: rectangles
- (h_i, l_i): y-coordinates of rectangle j
- w(j): weight of rectangle j
- V(j): optimal score of chain ending in j
- L: list of triplets (I_j, V(j), j)
 - L is sorted by I_i: smallest (North) to largest (South) value
 - L is implemented as a balanced binary tree

Main idea:

- Sweep through xcoordinates
- To the right of b, anything chainable to a is chainable to b
- Therefore, if V(b) > V(a), rectangle a is "useless" for subsequent chaining
- In L, keep rectangles j sorted with increasing l_jcoordinates ⇒ sorted with increasing V(j) score

Sparse DP for rectangle chaining

Go through rectangle x-coordinates, from lowest to highest:

- 1. When on the leftmost end of rectangle i:
 - a. j: rectangle in L, with largest $I_i < h_i$
 - b. V(i) = w(i) + V(j)

- 2. When on the rightmost end of i:
 - a. k: rectangle in L, with largest $I_k \le I_i$
 - b. If V(i) > V(k):
 - i. INSERT $(I_i, V(i), i)$ in L
 - ii. **REMOVE** all $(I_j, V(j), j)$ with $V(j) \le V(i) \& I_j \ge I_i$

Example

V	а	b	С	d	е
	5	11	8	12	13

L V(i) 5 9 15 16 V(i) 5 11 12 13 i a b d e

```
1. When on the leftmost end of rectangle i:
```

a. j: rectangle in L, with largest $l_i < h_i$

b. V(i) = w(i) + V(j)

2. When on the rightmost end of i:

a. k: rectangle in L, with largest $l_k \le l_i$

b. If V(i) > V(k):

i. INSERT $(l_i, V(i), i)$ in L

ii. **REMOVE** all $(l_i, V(j), j)$ with $V(j) \le V(i) \& l_i \ge l_i$

Time Analysis

- 1. Sorting the x-coords takes O(N log N)
- 2. Going through x-coords: N steps
- 3. Each of N steps requires O(log N) time:
 - Searching L takes log N
 - Inserting to L takes log N
 - All deletions are consecutive, so log N per deletion
 - Each element is deleted at most once: N log N for all deletions
 - Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in a balanced binary search tree

Constrained Dynamic Programming

 if we know that the ith element in one sequence must align with the jth element in the other, we can ignore two rectangles in the DP matrix

Step 3: Computing the Global Alignment in LAGAN

- given an anchor that starts at (i, j) and ends at (i', j'), LAGAN limits the DP to the unshaded regions
- thus anchors are somewhat flexible

Figure from: Brudno et al. Genome Research, 2003

Step 3: Computing the Global Alignment in LAGAN

Figures from: Brudno et al. Genome Research, 2003

Example Alignment:

