
Alignment of Long Sequences

BMI/CS 776
www.biostat.wisc.edu/bmi776/

Spring 2012
Colin Dewey

cdewey@biostat.wisc.edu

Goals for Lecture

the key concepts to understand are the following
•  how large-scale alignment differs from the simple case
•  the canonical three step approach of large-scale aligners
•  using suffix trees to find MUMs (alignment seeds)
•  using tries and threaded tries to find alignment seeds
•  constrained dynamic programming to align between/

around anchors
•  using sparse DP to find a chain of local alignments

Pairwise Large-Scale Alignment:
Task Definition

Given
–  a pair of large-scale sequences (e.g. chromosomes)
–  a method for scoring the alignment (e.g. substitution

matrices, insertion/deletion parameters)

Do
–  construct global alignment: identify all matching

positions between the two sequences

Large Scale Alignment Example:
Mouse Chr6 vs. Human Chr12

Why the Problem is Challenging

•  sequences too big to make O(n2) dynamic-
programming methods practical

•  long sequences are less likely to be colinear because
of rearrangements
–  initially we’ll assume colinearity
–  we’ll consider rearrangements in next lecture

General Strategy
Figure from: Brudno et al. Genome Research, 2003

1.  perform pattern
matching to find
seeds for global
alignment

2.  find a good chain of
anchors

3.  fill in remainder
with standard but
constrained
alignment method

Comparison of Large-Scale
Alignment Methods

Method Pattern matching Chaining

MUMmer suffix tree - MUMs LIS variant

AVID suffix tree - exact &
wobble matches

Smith-Waterman
variant

LAGAN k-mer trie, inexact
matches sparse DP

The MUMmer System
Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B	

1.  find all maximal, unique, matching subsequences

(MUMs)
2.  extract the longest possible set of matches that

occur in the same order in both genomes
3.  close the gaps

Step 1: Finding Seeds in MUMmer
•  maximal unique match (MUM):

–  occurs exactly once in both genomes A and B	

–  not contained in any longer MUM

•  key insight: a significantly long MUM is certain to be
part of the global alignment

mismatches

Suffix Trees

•  substring problem:
–  given text S of length m
–  preprocess S in O(m) time
–  such that, given query string Q of length n, find

occurrence (if any) of Q in S in O(n) time

•  suffix trees solve this problem, and others

Suffix Tree Definition
•  a suffix tree T for a string S of length m is a tree with

the following properties:
–  rooted and directed
–  m leaves, labeled 1 to m
–  each edge labeled by a substring of S
–  concatenation of edge labels on path from root

to leaf i is suffix i of S (we will denote this by Si...m)
–  each internal non-root node has at least two

children
–  edges out of a node must begin with different

characters

key property	

Suffixes

S = “banana$”
suffixes of S	

$
a$
na$
ana$
nana$
anana$
banana$

Suffix Tree Example

•  S = “banana$”
•  add ‘$’ to end so that suffix

tree exists (no suffix is a
prefix of another suffix)

$	

1

b	

a	

n	

a	

n	

a	

$	

n	

a	

n	

a	

 $	

$	

a	

n	

n	

a	

$	

 $	

2 3 4 5

a	

$	

6

7

Solving the Substring Problem

•  assume we have suffix tree T
•  FindMatch(Q, T):

–  follow (unique) path down from root of T
according to characters in Q

–  if all of Q is found to be a prefix of such a path
 return label of some leaf below this path

–  else, return no match found

Solving the Substring Problem

$	

1

b	

a	

n	

a	

n	

a	

$	

n	

a	

n	

a	

 $	

$	

a	

n	

n	

a	

$	

 $	

2 3 4 5

a	

$	

6

7

Q = nan	

return 3

$	

1

b	

a	

n	

a	

n	

a	

$	

n	

a	

n	

a	

 $	

$	

a	

n	

n	

a	

$	

 $	

2 3 4 5

a	

$	

6

7

Q = anab	

STOP	

return no match found

MUMs and Generalized Suffix Trees
•  build one suffix tree for both genomes A and B	

•  label each leaf node with genome it represents

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3 A, 5

Genome A: ccacg#

Genome B: cct$

each internal node represents
a repeated sequence

each leaf represents a suffix
and its position in sequence

MUMs and Suffix Trees
•  unique match: internal node with 2 children, leaf

nodes from different genomes
•  but these matches are not necessarily maximal

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3 A, 5

Genome A: ccacg#
Genome B: cct$

represents unique match

MUMs and Suffix Trees
•  to identify maximal matches, can compare suffixes

following unique match nodes

Genome A: acat#
Genome B: acaa$

a ca t#

ca t# t#

a$ t#

A, 2 A, 3

A, 4

A, 1

B, 4

$ a$

B, 3 B, 2

a$

B, 1

the suffixes following
these two match nodes
are the same; the left one
represents a longer match
(aca)

Using Suffix Trees to Find MUMs
•  O(n) time to construct suffix tree for both sequences

(of lengths ≤ n)
•  O(n) time to find MUMs - one scan of the tree (which

is O(n) in size)
•  O(n) possible MUMs in contrast to O(n2) possible

exact matches

•  main parameter of approach: length of shortest MUM
that should be identified (20 – 50 bases)

Step 2: Chaining in MUMmer

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

•  sort MUMs according to position in genome A	

•  solve variation of Longest Increasing Subsequence

(LIS) problem to find sequences in ascending order in
both genomes

Finding Longest Subsequence

•  unlike ordinary LIS problems, MUMmer takes into
account
–  lengths of sequences represented by MUMs
–  overlaps

•  requires time where k is number of MUMs

)log(kkO

Types of Gaps in a MUMmer
Alignment

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Step 3: Close the Gaps

•  SNPs:
–  between MUMs: trivial to detect
–  otherwise: handle like repeats

•  inserts
–  transpositions (subsequences that were deleted

from one location and inserted elsewhere): look for
out-of-sequence MUMs

–  simple insertions: trivial to detect

Step 3: Close the Gaps
•  polymorphic regions

–  short ones: align them with dynamic programming
method

–  long ones: call MUMmer recursively w/ reduced
min MUM length

•  repeats
–  detected by overlapping MUMs

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

The LAGAN Method
Brudno et al., Genome Research, 2003

 Given: genomes A and B

anchors = find_anchors(A, B)
step 3: finish global alignment with DP constrained by anchors

find_anchors(A, B)
 step 1: find local alignments by matching, chaining k-mer seeds
 step 2: anchors = highest-weight sequence of local alignments
 for each pair of adjacent anchors a1, a2 in anchors

 if a1, a2 are more than d bases apart
 A’, B’ = sequences between a1, a2
 sub-anchors = find_anchors(A’, B’)
 insert sub-anchors between a1, a2 in anchors

return anchors

Step 1a: Finding Seeds in LAGAN

•  degenerate k-mers: matching k-long sequences with
a small number of mismatches allowed

•  by default, LAGAN uses 10-mers and allows 1
mismatch

cacg cgcgctacat acct
acta cgcggtacat cgta

Finding Seeds in LAGAN
•  example: a trie to represent all 3-mers of the sequence

gaaccgacct

a c g

3, 7 2 4 5 8 1 6

a c c g a

c c g t a a c

•  one sequence is used to build the trie
•  the other sequence (the query) is “walked” through to

find matching k-mers

Allowing Degenerate Matches
•  suppose we’re allowing 1 base to mismatch in looking

for matches to the 3-mer acc; need to explore green
nodes

a c g

3, 7 2 4 5 8 1 6

a c c g a

c c g t a a c

LAGAN Uses Threaded Tries
•  in a threaded trie, each leaf for word w1...wp has a back

pointer to the node for w2...wp

a c g

3, 7 2 4 5 8 1 6

a c c g a

c c g t a a c

Traversing a Threaded Trie
•  consider traversing the trie to find 3-mer matches for the

query sequence: accgt

a c g

3, 7 2 4 5 8 1 6

a c c g a

c c g t a a c

•  usually requires following only two pointers to match against
the next k-mer, instead of traversing tree from root for each

Step 1b: Chaining Seeds in LAGAN

•  can chain seeds s1 and s2 if
–  the indices of s1 > indices

of s2 (for both sequences)
–  s1 and s2 are near each

other
•  keep track of seeds in the

“search box” as the query
sequence is processed

Figure from: Brudno et al. BMC Bioinformatics, 2003

Step 2: Chaining in LAGAN
•  use sparse dynamic programming to chain local

alignments

Slide from Serafim Batzoglou, Stanford University

The Problem: Find a Chain of Local Alignments

(x,y) → (x’,y’)

requires

x < x’
y < y’

Each local alignment has a
weight

FIND the chain with highest
total weight

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

•  1,…, N: rectangles

•  (hj, lj): y-coordinates of rectangle j

•  w(j): weight of rectangle j

•  V(j): optimal score of chain ending in j

•  L: list of triplets (lj, V(j), j)

§  L is sorted by lj: smallest (North) to largest (South) value

§  L is implemented as a balanced binary tree

y

h

l

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

Main idea:

•  Sweep through x-
coordinates

•  To the right of b, anything
chainable to a is chainable
to b

•  Therefore, if V(b) > V(a),
rectangle a is “useless” for
subsequent chaining

•  In L, keep rectangles j
sorted with increasing lj-
coordinates ⇒
 sorted with increasing V(j)
score

V(b)
V(a)

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

Go through rectangle x-coordinates, from lowest to highest:

1.  When on the leftmost end of rectangle i:

a.  j: rectangle in L, with largest lj < hi
b.  V(i) = w(i) + V(j)

2.  When on the rightmost end of i:

a.  k: rectangle in L, with largest lk ≤ li
b.  If V(i) > V(k):

i.  INSERT (li, V(i), i) in L
ii.  REMOVE all (lj, V(j), j) with V(j) ≤ V(i) & lj ≥ li

i

j

k

Slide from Serafim Batzoglou, Stanford University

Example
x

y

a: 5

c: 3

b: 6

d: 4
e: 2

2

5
6

9
10

11
12

14
15
16

1.  When on the leftmost end of rectangle i:
a.  j: rectangle in L, with largest lj < hi
b.  V(i) = w(i) + V(j)

2.  When on the rightmost end of i:
a.  k: rectangle in L, with largest lk ≤ li
b.  If V(i) > V(k):

i.   INSERT (li, V(i), i) in L
ii.   REMOVE all (lj, V(j), j) with V(j) ≤ V(i) & lj ≥ li

a b c d e
V

5

L
li

V(i)

i

5
5
a

8

11
8
c

11 12

9
11
b

15
12
d

13

16
13
e

Slide from Serafim Batzoglou, Stanford University

Time Analysis

1.  Sorting the x-coords takes O(N log N)

2.  Going through x-coords: N steps

3.  Each of N steps requires O(log N) time:

•  Searching L takes log N
•  Inserting to L takes log N
•  All deletions are consecutive, so log N per deletion
•  Each element is deleted at most once: N log N for all deletions

•  Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in
a balanced binary search tree

Constrained Dynamic
Programming

•  if we know that the ith
element in one sequence
must align with the jth
element in the other, we
can ignore two rectangles
in the DP matrix

i

j

Step 3: Computing the Global
Alignment in LAGAN

Figure from: Brudno et al. Genome Research, 2003

•  given an anchor that
starts at (i, j) and ends
at (i’, j’), LAGAN limits
the DP to the
unshaded regions

•  thus anchors are
somewhat flexible

Step 3: Computing the Global
Alignment in LAGAN

Figures from: Brudno et al. Genome Research, 2003

Figure from: Perna et al. Nature, 2001

Example Alignment:
E. Coli O157:H7 vs. E. coli K-12

