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Goals for Lecture 

the key concepts to understand are the following 
•  how large-scale alignment differs from the simple case 
•  the canonical three step approach of large-scale aligners 
•  using suffix trees to find MUMs (alignment seeds) 
•  using tries and threaded tries to find alignment seeds 
•  constrained dynamic programming to align between/

around anchors 
•  using sparse DP to find a chain of local alignments 



Pairwise Large-Scale Alignment: 
Task Definition 

Given 
–  a pair of large-scale sequences (e.g. chromosomes) 
–  a method for scoring the alignment (e.g. substitution 

matrices, insertion/deletion parameters) 

Do 
–  construct global alignment: identify all matching 

positions between the two sequences 



Large Scale Alignment Example: 
Mouse Chr6 vs. Human Chr12 



Why the Problem is Challenging 

•  sequences too big to make O(n2) dynamic-
programming methods practical 

•  long sequences are less likely to be colinear because 
of rearrangements 
–  initially we’ll assume colinearity 
–  we’ll consider rearrangements in next lecture 



General Strategy 
Figure from: Brudno et al.  Genome Research, 2003 

1.  perform pattern 
matching to find 
seeds for global 
alignment 

2.  find a good chain of 
anchors 

3.  fill in remainder 
with standard but 
constrained 
alignment method 



Comparison of Large-Scale 
Alignment Methods 

Method Pattern matching Chaining 

MUMmer suffix tree - MUMs LIS variant 

AVID suffix tree - exact & 
wobble matches 

Smith-Waterman 
variant 

LAGAN k-mer trie, inexact 
matches  sparse DP 



The MUMmer System 
Delcher et al., Nucleic Acids Research, 1999 

 

Given: genomes A and B	


1.  find all maximal, unique, matching subsequences 

(MUMs) 
2.  extract the longest possible set of matches that 

occur in the same order in both genomes 
3.  close the gaps 



Step 1: Finding Seeds in MUMmer 
•  maximal unique match (MUM): 

–  occurs exactly once in both genomes A and B	


–  not contained in any longer MUM 

•  key insight: a significantly long MUM is certain to be 
part of the global alignment 

mismatches 



Suffix Trees 

•  substring problem: 
–  given text S of length m 
–  preprocess S in O(m) time 
–  such that, given query string Q of length n, find 

occurrence (if any) of Q in S in O(n) time 

•  suffix trees solve this problem, and others 



Suffix Tree Definition 
•  a suffix tree T for a string S of length m is a tree with 

the following properties: 
–  rooted and directed 
–  m leaves, labeled 1 to m 
–  each edge labeled by a substring of S 
–  concatenation of edge labels on path from root 

to leaf i is suffix i of S (we will denote this by Si...m) 
–  each internal non-root node has at least two 

children 
–  edges out of a node must begin with different 

characters 

key property	





Suffixes 

S = “banana$” 
suffixes of S	



$ 
a$ 
na$ 
ana$ 
nana$ 
anana$ 
banana$ 



Suffix Tree Example 

•  S = “banana$” 
•  add ‘$’ to end  so that suffix 

tree exists (no suffix is a 
prefix of another suffix) 
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Solving the Substring Problem 

•  assume we have suffix tree T 
•  FindMatch(Q, T): 

–  follow (unique) path down from root of T 
according to characters in Q 

–  if all of Q is found to be a prefix of such a path 
 return label of some leaf below this path 

–  else, return no match found 



Solving the Substring Problem 
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return 3 
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STOP	



return no match found 



MUMs and Generalized Suffix Trees 
•  build one suffix tree for both genomes A and B	


•  label each leaf node with genome it represents 

acg# c g# t$ 

acg# c g# t$ 

acg# t$ 

A, 3 

A, 2 

A, 1 

A, 4 

B, 1 

B, 2 

B, 3 A, 5 

Genome A:  ccacg# 

Genome B:  cct$ 

each internal node represents  
a repeated sequence 

each leaf represents a suffix 
and its position in sequence 



MUMs and Suffix Trees 
•  unique match: internal node with 2 children, leaf 

nodes from different genomes 
•  but these matches are not necessarily maximal 

acg# c g# t$ 

acg# c g# t$ 

acg# t$ 

A, 3 

A, 2 

A, 1 

A, 4 

B, 1 

B, 2 

B, 3 A, 5 

Genome A:  ccacg# 
Genome B:  cct$ 

represents unique match 



MUMs and Suffix Trees 
•  to identify maximal matches, can compare suffixes 

following unique match nodes  

Genome A:  acat# 
Genome B:  acaa$ 

a ca t# 

ca t# t# 

a$ t# 

A, 2 A, 3 

A, 4 

A, 1 

B, 4 

$ a$ 

B, 3 B, 2 

a$ 

B, 1 

the suffixes following 
these two match nodes  
are the same; the left one 
represents a longer match 
(aca) 



Using Suffix Trees to Find MUMs 
•  O(n) time to construct suffix tree for both sequences 

(of lengths ≤ n) 
•  O(n) time to find MUMs - one scan of the tree (which 

is O(n) in size) 
•  O(n) possible MUMs in contrast to O(n2) possible 

exact matches 

•  main parameter of approach: length of shortest MUM 
that should be identified (20 – 50 bases) 



Step 2: Chaining in MUMmer 

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999 

•  sort MUMs according to position in genome A	


•  solve variation of Longest Increasing Subsequence 

(LIS) problem to find sequences in ascending order in 
both genomes 



Finding Longest Subsequence 

•  unlike ordinary LIS problems, MUMmer takes into 
account 
–  lengths of sequences represented by MUMs 
–  overlaps 

•  requires                  time where k is number of MUMs 
 

)log( kkO



Types of Gaps in a MUMmer 
Alignment 

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999 



Step 3: Close the Gaps 

•  SNPs: 
–  between MUMs: trivial to detect 
–  otherwise: handle like repeats 

•  inserts 
–  transpositions (subsequences that were deleted 

from one location and inserted elsewhere): look for 
out-of-sequence MUMs 

–  simple insertions: trivial to detect 



Step 3: Close the Gaps 
•  polymorphic regions 

–  short ones: align them with dynamic programming 
method 

–  long ones: call MUMmer recursively w/ reduced 
min MUM length 

•  repeats 
–  detected by overlapping MUMs 

Figure from: Delcher et al.  Nucleic Acids Research 27, 1999 



The LAGAN Method 
Brudno et al., Genome Research, 2003 

 
 Given: genomes A and B 

anchors = find_anchors(A, B) 
step 3: finish global alignment with DP constrained by anchors 
 
 

find_anchors(A, B) 
  step 1: find local alignments by matching, chaining k-mer seeds 
  step 2: anchors =  highest-weight sequence of local alignments 
 for each pair of adjacent anchors a1, a2 in anchors 

 if a1, a2 are more than d  bases apart 
   A’, B’ = sequences between a1, a2  
  sub-anchors = find_anchors( A’, B’ ) 
  insert sub-anchors between a1, a2  in anchors 

return anchors 
 

 



Step 1a: Finding Seeds in LAGAN 

•  degenerate k-mers: matching k-long sequences with 
a small number of mismatches allowed  

•  by default, LAGAN uses 10-mers and allows 1 
mismatch 

cacg cgcgctacat acct 
acta cgcggtacat cgta 



Finding Seeds in LAGAN 
•  example: a trie to represent all 3-mers of the sequence 

gaaccgacct 

a c g 

3, 7 2 4 5 8 1 6 

a c c g a 

c c g t a a c 

•  one sequence is used to build the trie  
•  the other sequence (the query) is “walked” through to 

find matching k-mers  



Allowing Degenerate Matches 
•  suppose we’re  allowing 1 base to mismatch in looking 

for matches to the 3-mer acc; need to explore green 
nodes 

a c g 

3, 7 2 4 5 8 1 6 

a c c g a 

c c g t a a c 



LAGAN Uses Threaded Tries 
•  in a threaded trie, each leaf for word w1...wp has a back 

pointer to the node for w2...wp 

a c g 

3, 7 2 4 5 8 1 6 

a c c g a 

c c g t a a c 



Traversing a Threaded Trie 
•  consider traversing the trie to find 3-mer matches for the 

query sequence: accgt 

a c g 

3, 7 2 4 5 8 1 6 

a c c g a 

c c g t a a c 

•  usually requires following only two pointers to match against 
the next k-mer,  instead of traversing tree from root for each 



Step 1b: Chaining Seeds in LAGAN 

•  can chain seeds s1 and s2 if 
–  the indices of s1 > indices  

of s2 (for both sequences) 
–  s1 and s2 are near each 

other 
•  keep track of seeds in the 

“search box” as the query 
sequence is processed 

Figure from: Brudno et al.  BMC Bioinformatics, 2003 



Step 2: Chaining in LAGAN 
•  use sparse dynamic programming to chain local 

alignments 



Slide from Serafim Batzoglou, Stanford University 

The Problem: Find a Chain of Local Alignments 

(x,y) → (x’,y’) 
 

requires 
 

x < x’ 
y < y’ 

Each local alignment has a 
weight 
 
FIND the chain with highest 
total weight 



Slide from Serafim Batzoglou, Stanford University 

Sparse DP for rectangle chaining 

•  1,…, N:  rectangles 

•  (hj, lj):  y-coordinates of rectangle j 

•  w(j):  weight of rectangle j 

•  V(j):   optimal score of chain ending in j 

•  L:   list of triplets (lj, V(j), j) 

§  L is sorted by lj: smallest (North) to largest (South) value 

§  L is implemented as a balanced binary tree 

y 

h 

l 



Slide from Serafim Batzoglou, Stanford University 

Sparse DP for rectangle chaining 

Main idea:  

•  Sweep through x-
coordinates 

•  To the right of b, anything 
chainable to a is chainable 
to b 

•  Therefore, if V(b) > V(a), 
rectangle a is “useless” for 
subsequent chaining 

•  In L, keep rectangles j 
sorted with increasing lj-
coordinates ⇒  
 sorted with increasing V(j) 
score 

V(b) 
V(a) 



Slide from Serafim Batzoglou, Stanford University 

Sparse DP for rectangle chaining 

Go through rectangle x-coordinates, from lowest to highest: 
 
1.  When on the leftmost end of rectangle i: 

a.  j: rectangle in L, with largest lj < hi 
b.  V(i) = w(i) + V(j) 

2.  When on the rightmost end of i: 

a.  k: rectangle in L, with largest lk ≤ li 
b.  If V(i) > V(k): 

i.  INSERT  (li, V(i), i) in L 
ii.  REMOVE  all (lj, V(j), j) with V(j) ≤ V(i) & lj ≥ li 

i 

j 

k 



Slide from Serafim Batzoglou, Stanford University 

Example 
x 

y 

a: 5 

c: 3 

b: 6 

d: 4 
e: 2 

2 

5 
6 

9 
10 

11 
12 

14 
15 
16 

1.  When on the leftmost end of rectangle i: 
a.  j: rectangle in L, with largest lj < hi 
b.  V(i) = w(i) + V(j) 

2.  When on the rightmost end of i: 
a.  k: rectangle in L, with largest lk ≤ li 
b.  If V(i) > V(k): 

i.   INSERT     (li, V(i), i) in L 
ii.   REMOVE   all (lj, V(j), j) with V(j) ≤ V(i) & lj ≥ li 

a b c d e 
V 

5 

L 
li 

V(i) 

i 

5 
5 
a 

8 

11 
8 
c 

11 12 

9 
11 
b 

15 
12 
d 

13 

16 
13 
e 



Slide from Serafim Batzoglou, Stanford University 

Time Analysis 

1.  Sorting the x-coords takes O(N log N) 

2.  Going through x-coords: N steps 

3.  Each of N steps requires O(log N) time: 

•  Searching L takes log N 
•  Inserting to L takes log N 
•  All deletions are consecutive, so log N per deletion 
•  Each element is deleted at most once: N log N for all deletions 

•  Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in 
a balanced binary search tree 



Constrained Dynamic 
Programming 

•  if we know that the ith 
element in one sequence 
must align with the jth 
element in the other, we 
can ignore two rectangles 
in the DP matrix 

i 

j 



Step 3: Computing the Global 
Alignment in LAGAN 

Figure from: Brudno et al.  Genome Research, 2003 

•  given an anchor that 
starts at (i, j) and ends 
at (i’, j’), LAGAN limits 
the DP to the 
unshaded regions 

•  thus anchors are 
somewhat flexible 



Step 3: Computing the Global 
Alignment in LAGAN 

Figures from: Brudno et al.  Genome Research, 2003 



Figure from: Perna et al.  Nature, 2001 

Example Alignment:  
E. Coli O157:H7 vs. E. coli K-12 


