Alignment of Long Sequences **BMI/CS 776** www.biostat.wisc.edu/bmi776/ Spring 2012 Colin Dewey cdewey@biostat.wisc.edu #### Goals for Lecture the key concepts to understand are the following - how large-scale alignment differs from the simple case - the canonical three step approach of large-scale aligners - using suffix trees to find MUMs (alignment seeds) - using tries and threaded tries to find alignment seeds - constrained dynamic programming to align between/ around anchors - using sparse DP to find a chain of local alignments # Pairwise Large-Scale Alignment: Task Definition #### Given - a pair of large-scale sequences (e.g. chromosomes) - a method for scoring the alignment (e.g. substitution matrices, insertion/deletion parameters) #### Do construct global alignment: identify all matching positions between the two sequences # Large Scale Alignment Example: Mouse Chr6 vs. Human Chr12 # Why the Problem is Challenging - sequences too big to make $O(n^2)$ dynamic-programming methods practical - long sequences are less likely to be colinear because of rearrangements - initially we'll assume colinearity - we'll consider rearrangements in next lecture ### **General Strategy** Figure from: Brudno et al. Genome Research, 2003 perform pattern matching to find seeds for global alignment 2. find a good chain of anchors fill in remainder with standard but constrained alignment method # Comparison of Large-Scale Alignment Methods | Method | Pattern matching | Chaining | | |--------|---|-------------|--| | MUMmer | suffix tree - MUMs | LIS variant | | | AVID | suffix tree - exact & Smith-Watermann variant | | | | LAGAN | k-mer trie, inexact matches | sparse DP | | ### The MUMmer System Delcher et al., Nucleic Acids Research, 1999 #### **Given**: genomes *A* and *B* - find all maximal, unique, matching subsequences (MUMs) - 2. extract the longest possible set of matches that occur in the same order in both genomes - 3. close the gaps ### Step 1: Finding Seeds in MUMmer - maximal unique match (MUM): - occurs exactly once in both genomes A and B - not contained in any longer MUM Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta Genome B: gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag mismatches key insight: a significantly long MUM is certain to be part of the global alignment ### **Suffix Trees** - substring problem: - given text S of length m - preprocess S in O(m) time - such that, given query string Q of length n, find occurrence (if any) of Q in S in O(n) time - suffix trees solve this problem, and others ### Suffix Tree Definition - a suffix tree *T* for a string *S* of length *m* is a tree with the following properties: - rooted and directed - m leaves, labeled 1 to m key property - each edge labeled by a substring of S - concatenation of edge labels on path from root to leaf i is suffix i of S (we will denote this by $S_{i...m}$) - each internal non-root node has at least two children - edges out of a node must begin with different characters ### **Suffixes** ``` S = \text{"banana}" suffixes of S $ a$ na$ ana$ nana$ anana$ banana$ ``` ### Suffix Tree Example S = "banana\$" add '\$' to end so that suffix tree exists (no suffix is a prefix of another suffix) ### Solving the Substring Problem - assume we have suffix tree T - FindMatch(Q, T): - follow (unique) path down from root of T according to characters in Q - if all of Q is found to be a prefix of such a path return label of some leaf below this path - else, return no match found # Solving the Substring Problem ### MUMs and Generalized Suffix Trees - build one suffix tree for both genomes A and B - label each leaf node with genome it represents ### MUMs and Suffix Trees - unique match: internal node with 2 children, leaf nodes from different genomes - but these matches are not necessarily maximal ### MUMs and Suffix Trees • to identify <u>maximal</u> matches, can compare suffixes following unique match nodes # Using Suffix Trees to Find MUMs - O(n) time to construct suffix tree for both sequences (of lengths $\leq n$) - O(n) time to find MUMs one scan of the tree (which is O(n) in size) - O(n) possible MUMs in contrast to $O(n^2)$ possible exact matches - main parameter of approach: length of shortest MUM that should be identified (20 – 50 bases) ### Step 2: Chaining in MUMmer - sort MUMs according to position in genome A - solve variation of Longest Increasing Subsequence (LIS) problem to find sequences in ascending order in both genomes Figure from: Delcher et al., Nucleic Acids Research 27, 1999 ### Finding Longest Subsequence - unlike ordinary LIS problems, MUMmer takes into account - lengths of sequences represented by MUMs - overlaps - requires $O(k \log k)$ time where k is number of MUMs # Types of Gaps in a MUMmer Alignment 1. SNP: exactly one base (indicated by ^) differs between the two sequences. It is surrounded by exact-match sequence. Genome A: cgtcatgggcgttcgtcgttg Genome B: cgtcatgggcattcgtcgttg 2. Insertion: a sequence that occurs in one genome but not the other. $\begin{array}{lll} \text{Genome A:} & \operatorname{cggggtaaccgc} \dots \dots \dots \operatorname{cctggtcggg} \\ \text{Genome B:} & \operatorname{cggggtaaccgcgttgctcggggtaaccgccctggtcggg} \end{array}$ 3. Highly polymorphic region: many mutations in a short region. $\begin{array}{lll} \text{Genome A:} & \texttt{ccgcctcgcctgg.gctggcgcccgctc} \\ \text{Genome B:} & \texttt{ccgcctcgccagttgaccgcgcccgctc} \end{array}$ 4. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of the repeat in Genome B is imperfect, containing one mismatch to the other three identical copies. Genome A: cTGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc Genome B: aTGGGTGGGGCgACGTggggggggggTGGGTGGGACAACGTa ### Step 3: Close the Gaps - SNPs: - between MUMs: trivial to detect - otherwise: handle like repeats - inserts - transpositions (subsequences that were deleted from one location and inserted elsewhere): look for out-of-sequence MUMs - simple insertions: trivial to detect ### Step 3: Close the Gaps - polymorphic regions - short ones: align them with dynamic programming method - long ones: call MUMmer recursively w/ reduced min MUM length - repeats - detected by overlapping MUMs Figure from: Delcher et al. Nucleic Acids Research 27, 1999 #### The LAGAN Method Brudno et al., Genome Research, 2003 ``` Given: genomes A and B anchors = find_anchors(A, B) step 3: finish global alignment with DP constrained by anchors find anchors(A, B) step 1: find local alignments by matching, chaining k-mer seeds step 2: anchors = highest-weight sequence of local alignments for each pair of adjacent anchors a_1, a_2 in anchors if a_1, a_2 are more than d bases apart A', B' = sequences between a_1, a_2 sub-anchors = find anchors(A', B') insert sub-anchors between a_1, a_2 in anchors return anchors ``` ### Step 1a: Finding Seeds in LAGAN - degenerate k-mers: matching k-long sequences with a small number of mismatches allowed - by default, LAGAN uses 10-mers and allows 1 mismatch cacg cgcgctacat acct acta cgcggtacat cgta # Finding Seeds in LAGAN • example: a *trie* to represent all 3-mers of the sequence - one sequence is used to build the trie - the other sequence (the query) is "walked" through to find matching k-mers # Allowing Degenerate Matches • suppose we're allowing 1 base to mismatch in looking for matches to the 3-mer acc; need to explore green ### LAGAN Uses Threaded Tries • in a threaded trie, each leaf for word $W_1...W_p$ has a back pointer to the node for $W_2...W_p$ ### Traversing a Threaded Trie consider traversing the trie to find 3-mer matches for the usually requires following only two pointers to match against the next k-mer, instead of traversing tree from root for each # Step 1b: Chaining Seeds in LAGAN - can chain seeds s₁ and s₂ if - the indices of s_1 > indices of s_2 (for both sequences) - s₁ and s₂ are near each other - keep track of seeds in the "search box" as the query sequence is processed Figure from: Brudno et al. BMC Bioinformatics, 2003 # Step 2: Chaining in LAGAN use sparse dynamic programming to chain local alignments $$(x,y) \rightarrow (x',y')$$ requires $$x < x'$$ $y < y'$ Each local alignment has a weight FIND the chain with highest total weight ### Sparse DP for rectangle chaining - 1,..., N: rectangles - (h_i, l_i): y-coordinates of rectangle j - w(j): weight of rectangle j - V(j): optimal score of chain ending in j - L: list of triplets (I_j, V(j), j) - L is sorted by I_i: smallest (North) to largest (South) value - L is implemented as a balanced binary tree #### Main idea: - Sweep through xcoordinates - To the right of b, anything chainable to a is chainable to b - Therefore, if V(b) > V(a), rectangle a is "useless" for subsequent chaining - In L, keep rectangles j sorted with increasing l_jcoordinates ⇒ sorted with increasing V(j) score ### Sparse DP for rectangle chaining Go through rectangle x-coordinates, from lowest to highest: - 1. When on the leftmost end of rectangle i: - a. j: rectangle in L, with largest $I_i < h_i$ - b. V(i) = w(i) + V(j) - 2. When on the rightmost end of i: - a. k: rectangle in L, with largest $I_k \le I_i$ - b. If V(i) > V(k): - i. INSERT $(I_i, V(i), i)$ in L - ii. **REMOVE** all $(I_j, V(j), j)$ with $V(j) \le V(i) \& I_j \ge I_i$ ### Example | V | а | b | С | d | е | |---|---|----|---|----|----| | | 5 | 11 | 8 | 12 | 13 | L V(i) 5 9 15 16 V(i) 5 11 12 13 i a b d e ``` 1. When on the leftmost end of rectangle i: ``` a. j: rectangle in L, with largest $l_i < h_i$ b. V(i) = w(i) + V(j) 2. When on the rightmost end of i: a. k: rectangle in L, with largest $l_k \le l_i$ b. If V(i) > V(k): i. INSERT $(l_i, V(i), i)$ in L ii. **REMOVE** all $(l_i, V(j), j)$ with $V(j) \le V(i) \& l_i \ge l_i$ ### Time Analysis - 1. Sorting the x-coords takes O(N log N) - 2. Going through x-coords: N steps - 3. Each of N steps requires O(log N) time: - Searching L takes log N - Inserting to L takes log N - All deletions are consecutive, so log N per deletion - Each element is deleted at most once: N log N for all deletions - Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in a balanced binary search tree # Constrained Dynamic Programming if we know that the ith element in one sequence must align with the jth element in the other, we can ignore two rectangles in the DP matrix # Step 3: Computing the Global Alignment in LAGAN - given an anchor that starts at (i, j) and ends at (i', j'), LAGAN limits the DP to the unshaded regions - thus anchors are somewhat flexible Figure from: Brudno et al. Genome Research, 2003 # Step 3: Computing the Global Alignment in LAGAN Figures from: Brudno et al. Genome Research, 2003 # Example Alignment: