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Goals for Lecture

the key concepts to understand are the following
* the large-scale multiple-alignment task

* progressive alignment

» breakpoint identification

« undirected graphical models

« minimal spanning trees/forests



Multiple Whole Genome Alignment:
Task Definition

Given
— a set of n > 2 genomes (or other large-scale sequences)
— a method for scoring the similarity of a pair of characters

Do

— construct global alignment: identify matches between
genomes as well as various non-match features



The MLAGAN Method

[Brudno et al., Genome Research, 2003]

Given: k genomes X’ | ... , X%, guide tree T
for each pair of genomes X¢, X/
anchors(i, j) = find_anchors(X’, X/)
align = progressive _alignment(T, anchors)

for each genome X' /[ iterative refinement
anchors = segments of X’ with high scores in align
align = LAGAN(align - X!, X!, anchors) // realign X

progressive alignment(T, anchors)
if Tis not a leaf node
align_left = progressive alignment(7.left, anchors)
align_right = progressive alignment(T.right, anchors)
align = LAGAN(align_left, align_right, anchors)
return align



Progressive Alignment
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Progressive Alignment:
MLAGAN Example
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Progressive Alignment:
MLAGAN Example

suppose we're aligning the multi-sequence X/Y with Z

1. anchors from X-Z and Y-Z

X
become anchors for X/Y-Z Ve z : 2

2. overlapping anchors are
reweighted

3. LIS algorithm is used to
chain anchors
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Figure from: Brudno et al. Genome Research, 2003



Reweighting Anchors in MLAGAN
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Genome Rearrangements
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translocation

e can occur within a chromosome or across chromosomes
« can have combinations of these events



Genome Rearrangement Example:
Mouse vs. Human X Chromsome
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Figure from: Pevzner and Tesler. PNAS, 2003
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« each colored block represents a syntenic region of the two chromosomes
» the two panels show the two most parsimonious sets of rearrangements to

map one chromosome to the other



The Mauve Method

[Darling et al., Genome Research, 2004]

Given: k genomes X/ , ..., Xk
1. find multi-MUMs (MUMs present in 2 or more genomes)
2. calculate a guide tree based on multi-MUMs
3. find LCBs (sequences of multi-MUMSs) to use as anchors
4. do recursive anchoring within and outside of LCBs
5. calculate a progressive alignment of each LCB using guide tree

* note: no LIS step!



2. Calculating the Guide Tree in Mauve

« unlike MLAGAN, Mauve calculates the guide tree
instead of taking it as an input

1. find multi-MUMs 2. calculate pairwise 3. run neighbor-joining
in sequences distances to get guide tree

S. flexneri 2 S. flexneri 2A 24577

E. coliO157:H7 EDL933

E. coliO157:H7 VT2 Sakai

S. enterica Typhi CT18

S. enterica Typhi Ty2 s

. enterica Typhimurium

» distance between two sequences is based on fraction of
sequences shared in multi-MUMs



3. Selecting Anchors:
Finding Local Collinear Blocks

A) The initial set of matching regions:
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« partition set of multi-MUMs, rL‘ | | ]
M into collinear blocks (B B8] [ |
l L]
. find minimum_weight B) Minimum partitioning into collinear blocks:
i - B

collinear block(s)

*  remove minimum weight
block(s) if they’re
sufficiently small

until minimum-weight block is not ,
C) After removing block 3:

small enough 3>
>3]




4. and 5. Recursive Anchoring
and Gapped Alignment

 recursive anchoring (finding finer multi-MUMs and LCBs) and

standard alignment (CLUSTALW) are used to extend LCBs
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Mauve Alignment of 9 Enterobacteria
(Shigella and E. coli)
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Mauve vs. MLAGAN:
Accuracy on Simulated Genome Data

Mauve Multi-LAGAN
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substitution and indel rates observed in enterobacteria



Mauve vs. LAGAN:
Accuracy on Simulated Genome
Data with Inversions

Mauve Shuffle-LAGAN
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Figure courtesy of Aaron Darling






Mauve Accuracy on Simulated
Enterobacteria-like Data
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« small HT events have little effect compared to large HT events

* when scored on regions conserved in all 9 taxa, accuracy is
always > 98%

Figures courtesy of Aaron Darling



Mercator
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» orthologous segment identification: graph-based method

 breakpoint identification: refine segment endpoints with a
graphical model



Establishing Anchors Representing
Orthologous Segments

e anchors can correspond to

genes, exons or MUMS d
¢ e.g., may do all-vs-all pairwise o
comparison of genes

e construct graph with anchors as
vertices and high-similarity hits . h

as edges (weighted by
alignment score)
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Rough Orthology Map

k-partite graph with edge weights

vertices = anchors, edges = sequence similarity

C

(OHODIONNO)
\\//"_

CA— A T 0 O

VAV
\4\

(( O O O OO O)>




Greedy Segment Identification

e fori=kto2do

— identify repetitive anchors (depends on
number of high-scoring edges incident to each
anchor)

— find “best-hit” anchor cliques of size = j
— Join colinear cligues into segments

— filter edges not consistent with significant
segments



Mercator Example

repetitive elements (black anchors) are
identified; 3-cliques (red and blue anchors)
are found

segments are formed by red and blue
anchors; inconsistent edges are filtered

T~ ’l | < I* K 2-cliques are found and incorporated into

o




Refining the Map:
Finding Breakpoints

e breakpoints: the positions at which genomic
rearrangements disrupt colinearity of segments

G —
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e Mercator finds breakpoints by using inference in an
undirected graphical model



Undirected Graphical Models

« an undirected graphical model represents a probability
distribution over a set of variables using a factored

representation
(5,

1
p)=— [y G
C Ecliques @

B. random variable

b assignment of values to all variables

bc assignment of values subset of variables in C

?,UC function (called a potential) representing the “compatibility”
of a given set of values

A normalization term



Undirected Graphical Models
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for the given graph:

1
p(b) = E Y, (by,bs,b5) Y, (b,bg,b;) Y5(b,,b, ,bg)



The Breakpoint Graph
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Breakpoint Undirected Graphical Model

e Mercator frames the task of finding breakpoints as an
inference task in an undirected graphical model

p) =~ [T welbo)

/ L C Ecliques '\

configuration of potential function representing score of
breakpoints multiple alignment of sequences in clique
C for breakpoints in b



Breakpoint Undirected Graphical Model
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e the possible values for a variable indicate the possible
coordinates for a breakpoint

e the potential for a clique is a function of the alignment
score for the breakpoint regions split at the breakpoints b,




Breakpoint Undirected Graphical Model
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e inference task: find most probable configuration b of
breakpoints

e not tractable in this case
e graph has a high degree of connectivity

e multiple alignment is difficult

e so0 Mercator uses several heuristics



Making Inference Tractable in
Breakpoint Undirected Graphical Model

Ty

e assign potentials, based on pairwise alignments, to edges only

1
p)=— [ [ v, @b

(i,])Eedges

e eliminate edges by finding a minimum spanning forest, where
edges are weighted by phylogenetic distance



Minimal Spanning Forest

minimal spanning tree: a
minimal-weight tree that
connects all vertices in a graph

minimal spanning forest. a ;

set of MSTs, one for each @ q @

connected component @ @ (o)
0 0 O ©
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Breakpoint Finding Algorithm

construct breakpoint segment graph

weight edges with phylogenetic distances

find minimum spanning tree/forest

perform pairwise alignment for each edge in MST
use alignments to estimate vy, ;(,,b;)

perform max-product inference (similar to Viterbi)
to find maximizing b,



Comments on Whole-Genome
Alignment Methods

« employ common strategy
— find seed matches
— identify (sequences of) matches to anchor alignment
— fill in the rest with standard methods (e.g. DP)
 vary in what they (implicitly) assume about
— the distance of sequences being compared
— the prevalence or rearrangements
* involve a lot of heuristics
— for efficiency

— because we don’t know enough to specify a precise
objective function (e.g. how should costs should be
assigned to various rearrangements)



