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Goals for today

* Background
— Components of the regulation machinery
— Transcriptional gene regulation

* Challenges in regulatory networks
— Element identification

— Network identification
e Extensions to inference

— Network structure analysis

e Evolution of regulatory networks
— Comparative functional genomics




Gene Regulation

Collection of biological processes that
determine what set of genes get expressed
when and where.



What regulates gene expression?
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Transcriptional gene regulation
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Transcriptional regulatory network connects TFs to target genes
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Challenges in regulatory networks
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Element identification

* Elements
— Regulators: Transcription factor proteins
— Targets: Sequence-specific binding sites
 Computational approaches
— Regulators: Sequence alignment
— Motifs: De novo motif discovery

— Targets: Sequence specific motif scanning



Goals for today

e Background
— Components of the regulation machinery
— Transcriptional gene regulation

* Challenges in regulatory networks
— Element identification

— Network identification

e Extensions to inference
— Network structure analysis

* Evolution of regulatory networks
— Comparative functional genomics



Network identification
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Approaches to Network identification

 Wet-lab approaches
— ChlPseq/ChlIP-chip
— Genetic perturbations

 Computational approaches
— What data to learn networks?
* Motifs, ChIP binding assays, Expression
— How to learn networks?

» Supervised network inference
* Unsupervised network inference

— How to evaluate network usefulness?



Types of data

* Physical Q
— ChlIP-chip and ChIP-seq :aj_v__&Gene

— Sequence specific motifs ChIP/ \motif

— Measure static information

* Functional
— (Gene co-expression TF _
— Measure dynamic information Target |1 SIS

MRNA & chromatin



Supervised learning of TF-target interactions

Define:
= 1 if X and regulates Y
az= 0 otherwise

Given:
XY.features: Attributes of Xand Y
We need:

Prob. of regulating: P(/,,=1[XY.features)
Prob. of not regulating: P(/,,=0/XY.features)

Prob. of
interacting >
Prob. of non-
interacting?



Supervised learning of TF-target interactions
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Inferring the regulatory network of the fly
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Supervised, integrative approach recovers more
ground truth edges
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Unsupervised network inference
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Probabilistic graphical models (PGMs)

* A marriage between graph and probability
theory

— Handle noise and uncertainty
— Nodes: Random variables

— Edges: statistical dependency among random
variables

 Model the joint probability distribution

— Parameters: mathematical description of relations

* Enable incorporation of prior knowledge



Graphical models for unsupervised network
inference

* Bayesian networks
* Dependency networks

Random variables
encode expression levels REGULATORS

@ ) () @,

TARGET E
‘ @ Structure Function

Goal: learn the structure and function of these networks




Some notation

Random variables
X =X, , Xy

Joint assignment
Xd = L1d" " yTNd
Dataset

D:{Xb'” 7Xd}

Joint probability distribution
P(X — Xd)



Bayesian networks: estimate a set of
conditional probability distributions

Regulators (parents)

SN L7 P(Yi’Pa(Xla"' 7Xp))

ﬁ Function: Conditional probability
Target (child) distribution (CPD)

JPD: product of conditionals per variable



The learning problems

* Parameter learning on known structure
— Estimate 0; of the conditionals

e Structure learning
— Find the statistical dependency structure
— Subsumes parameter learning



Parameter learning

Maximum likelihood parameter estimation

s Known graph structure

f = arg max P(l\?\é’, g)
Data

Data likelihood
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Structure learning

e Maximum likelihood framework

G = arg max m@axP(D\@, G)



Structure learning using score-based search

Score(G) = P(D|G, 0)
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Learning network structure is computationally
expensive

N
* For N variables there are 2( 2) possible
networks:

* Set of possible networks grows super
exponentially

Number of networks
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Need approximate methods to search the space of networks



Approximation strategies

* Search the parent set independently
* Restrict the size of the parent set
* Assume linear relationships



Dependency networks: a set of regression

problems
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Regularized linear regression

* Lasso: sparsity

b = argnéinHYi — X, * b;|| + Alb;

* Ridge regression: smoothness

by = argmin [[Y; — X #by|| + Al[by|

» Elastic net: sparsity + smoothness
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Extensions to vanilla network inference
approaches

* Making methods more scalable
* Imposing biological constraints
* Integrating other types of data



Genes
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Learning regulatory programs of modules instead of
genes

@\ Regulatory program

Bayesian Network formalism
No cyclic dependencies
Target genes share CPDs
Modules are re-visited
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But every gene has the same set of parameters

Lee et al 2009, Segal et al 03



Combine per-gene and per-module network
inference methods

9,

b3 by
Per gene Per module

How to impose module constraints?



Keep regulators same but params different




Group lasso for module constrained per gene
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Regulators (318)

Example coefficient matrix
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Integrating data as structure priors



Revisiting Structure learning

* Bayesian framework
(4 is an unknown random variable

* Optimize posterior distribution of graph given
data Graph prior

P(GID) = P(DIG)P()

P(G|D) x P(G) / P(D.0|G)d#

P(G|D) = P(D|G,0pmap)P(9)

Maximum a posteriori estimate



A structure prior to integrate data

 Let P(G) distributes independently over edges

P(G) =

1] Pxi — X;)

Present edges

] a-PX: — X))

| Xi+X; N
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* Define prior probability of edge presence/absence

P(X; — X;) =
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Graph structure complexity

Prior strength
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Behavior of graph structure prior
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@ Regulators

[ Target

Effect of prior on gr

aph structure

B, 0.5 -2 -4 -4 -4

B, 0.4 0.4 0.4 2 4

TFs 199 141 92 96 108
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Score -6890 -8319.53 -9216 -9187 -9055
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Hierarchical nature

* Regulators are hierarchically
organized with different roles
per level

— Top: Master regulators

influence many genes

— Middle: Bottle necks directly
targeting most genes

— Bottom: Essential regulators

Hierarchical structure of S. cerevisiae regulatory
network

Yu & Gerstein 2006, Jothi et al. 2009



Modularity of regulatory networks

-

e Genes in modules involved in similar functions and co-
regulated

 Modules can be identified using graph partitioning
algorithms

— Markov Clustering Algorithm
— Girvan-Newman Algorithm

Newman 2002, van Dongen 2008



Structural network motifs

Auto-regulation Multi-component Feed-forward loop
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Feed-forward loops involved in speeding up in response of target gene

Lee et.al. 2002, Mangan & Alon, 2003



Network motifs often have specific functions
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Uri Alon, Nature Review Genetics 2007



Goals for today

e Background

— Transcriptional gene regulation
— cis and trans elements

* Challenges in regulatory networks
— Element identification

— Network identification
e Extensions to inference

— Structural properties of networks

Evolution of regulatory networks
— Comparative functional genomics




Why understand evolution of regulatory
networks

Importance in evolution of complex body plan:
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Factors affecting regulatory network evolution
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Thompson and Regev, FEBS letters, 2009.



Key questions

How conserved are regulatory networks?

— Elements
— Connections

How are different conservation/divergence scenarios
implemented?

What is the ancestral state?

Do regulatory differences explain functional
innovation?



Comparative genomics approaches to
understanding regulation evolution
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trats

Phylogenetic relationships to compare sequence differences, and
relate to phenotypic traits.



Scenarios of conservation & divergence

Network of Organism 1 Network of Organism 2

P S

Target is conserved but program is not

Program is conserved but targets are not

Hao Li and Johnson, 2010



How do regulatory networks rewire?
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But, we know only a handful of examples
from the pre-mRNA era.
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Systematic approaches to compare regulatory
networks

* One species at a time
— Infer a regulatory network per species

— Compare networks across species

* Learn multiple networks simultaneously

— Use phylogenetic relationships to constrain the
network structure



Learning networks one species at a time
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Comparing networks across species

Easy case: One to one orthologs:

e

Orthologous ?

/AR

Not so easy cases: One to many orthologs:




Defining an edge match

E{le : {(i,j) = {AylvAyZ} X {BylvBy2}}

Ax — Bx is conserved in Y if E{}B + ()




Using yeast Ascomycetes to understand
regulatory evolution

S. cerevisiage ¥/
S. paradoxus
Whole genome duplication S. mikatae

\ S. bayanus Respiro-fermentative (post-WGD)
C. glabrata

S. castellii ¢
K. polysporus

K. waltii

S. kluyveri

K. "?F“'S v Respirative (pre-WGD)
D. hansenii
C. albicans ¢f
Y. lipolytica
S. japonicus (74 I . . .
Respiro-fermentative (schizos
S. pombe ¥ P ( )

Respiro-fermentative: use fermentation (ethanol production) when grown on glucose
Respirative: use respiration when grown on glucose

300 million years of evolution



Experiments for capturing functional response
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Wapinski et al. 2010, Thompson et al. In prep.



Topologically networks look similar, but have
very few common edges
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Take-away messages

Transcriptional regulatory networks determine context specific
gene expression

— Important in development and disease
Most of the regulatory network is not known

Machine learning approaches to network inference
— Supervised

— Unsupervised

Extensions to existing inference algorithms

— Incorporate biological intuition

— Integrate different types of datasets

Evolution of regulatory networks

— Major player for diversifying phenotypic diversity of organism

— Comparative functional genomics brings new opportunities
* Need phylogenetically-aware network analysis algorithms



For further reading, discussions, chats

sroy@biostat.wisc.edu



