Biostatistics and Medical Informatics 776 Computer Sciences 776 Advanced Bioinformatics (Spring 2012)

Transcriptional regulatory networks: inference and evolution

Sushmita Roy

Goals for today

- Background
 - Components of the regulation machinery
 - Transcriptional gene regulation
- Challenges in regulatory networks
 - Element identification
 - Network identification
 - Extensions to inference
 - Network structure analysis
- Evolution of regulatory networks
 - Comparative functional genomics

Gene Regulation

Collection of biological processes that determine what set of genes get expressed when and where.

What regulates gene expression?

Transcriptional gene regulation

Transcriptional regulatory network connects TFs to target genes

Goals for today

- Background
 - Components of the regulation machinery
 - Transcriptional gene regulation
- Challenges in regulatory networks
 - Element identification
 - Network identification
 - Extensions to inference
 - Network structure analysis
- Evolution of regulatory networks
 - Comparative functional genomics

Challenges in regulatory networks

Parts Identification

ATTAAT CGCTT

Regulatory Motifs

Network identification

X=f(A,B)
Y=g(B)
Function

Network Structure
Analysis

Hubs, degree-distributions, Network motifs

Element identification

- Elements
 - Regulators: Transcription factor proteins
 - Targets: Sequence-specific binding sites
- Computational approaches
 - Regulators: Sequence alignment
 - Motifs: De novo motif discovery
 - Targets: Sequence specific motif scanning

Goals for today

- Background
 - Components of the regulation machinery
 - Transcriptional gene regulation
- Challenges in regulatory networks
 - Element identification
 - Network identification
 - Extensions to inference
 - Network structure analysis
- Evolution of regulatory networks
 - Comparative functional genomics

Network identification

Who are the regulators?

How they determine expression levels?

Approaches to Network identification

- Wet-lab approaches
 - ChIPseq/ChIP-chip
 - Genetic perturbations
- Computational approaches
 - What data to learn networks?
 - Motifs, ChIP binding assays, Expression
 - How to learn networks?
 - Supervised network inference
 - Unsupervised network inference
 - How to evaluate network usefulness?

Types of data

Physical

- ChIP-chip and ChIP-seq
- Sequence specific motifs
- Measure static information

Functional

- Gene co-expression
- Measure dynamic information

Supervised learning of TF-target interactions

Given:

XY.features: Attributes of X and Y

We need:

Prob. of regulating: $P(I_{12}=1|XY.features)$

Prob. of not regulating: $P(I_{12}=0|XY.features)$

Supervised learning of TF-target interactions

Inferring the regulatory network of the fly

Supervised, integrative approach recovers more ground truth edges

Unsupervised network inference

Boolean Networks

Differential equations

$$\frac{dX_3(t)}{dt} = \\ \kappa \ g(X_1(t), X_2(t))$$
 Rate equations

Probabilistic graphical models

$$P(X_3|X_1, X_2) = N(X_1a + X_2b, \sigma)$$

Probability distributions

Probabilistic graphical models (PGMs)

- A marriage between graph and probability theory
 - Handle noise and uncertainty
 - Nodes: Random variables
 - Edges: statistical dependency among random variables
- Model the joint probability distribution
 - Parameters: mathematical description of relations
- Enable incorporation of prior knowledge

Graphical models for unsupervised network inference

- Bayesian networks
- Dependency networks

Goal: learn the structure and function of these networks

Some notation

Random variables

$$\mathbf{X} = X_1, \cdots, X_N$$

Joint assignment

$$\mathbf{x}_d = x_{1d} \cdots, x_{Nd}$$

Dataset

$$D = \{\mathbf{x}_1, \cdots, \mathbf{x}_d\}$$

Joint probability distribution

$$P(\mathbf{X} = \mathbf{x}_d)$$

Bayesian networks: estimate a set of conditional probability distributions

Regulators (parents)

$$P(Y_i|\mathrm{Pa}(X_1,\cdots,X_p))$$

Function: Conditional probability distribution (CPD)

JPD: product of conditionals per variable

The learning problems

- Parameter learning on known structure
 - Estimate θ_i of the conditionals
- Structure learning
 - Find the statistical dependency structure
 - Subsumes parameter learning

Parameter learning

Maximum likelihood parameter estimation

$$\widehat{ heta} = rg \max_{ heta} P(D| heta, \mathcal{G})$$
 Known graph structure

Data likelihood

$$P(D|\theta, \mathcal{G}) = \prod_{d=1}^{|D|} P(\mathbf{X} = \mathbf{x}_d | \theta, \mathcal{G})$$

Structure learning

Maximum likelihood framework

$$\widehat{\mathcal{G}} = \arg \max_{\mathcal{G}} \max_{\theta} P(D|\theta, \mathcal{G})$$

Structure learning using score-based search

$$\operatorname{Score}(\mathcal{G}) = P(D|\mathcal{G}, heta)$$

$$\widehat{\mathcal{G}} = rg \max_{\mathcal{G}} \max_{\theta} P(\mathbf{X}|\theta, \mathcal{G})$$
Best graph Maximum likelihood

Learning network structure is computationally expensive

- For N variables there are $2^{\binom{N}{2}}$ possible networks:
- Set of possible networks grows super exponentially

N	Number of networks
3	8
4	64
5	1024
6	32768

Need approximate methods to search the space of networks

Approximation strategies

- Search the parent set independently
- Restrict the size of the parent set
- Assume linear relationships

Dependency networks: a set of regression problems

Function: Linear regression

$$\begin{aligned} \mathbf{b}_i^* &= \arg\min_{b_i} ||\mathbf{Y}_i - \mathbf{X}_i * \mathbf{b}_i|| + f(\mathbf{b}_i, \lambda) \\ &\uparrow \\ &1 \leq i \leq m \\ &\uparrow \\ &\text{Number of genes} \end{aligned}$$
 Regularization term

Regularized linear regression

Lasso: sparsity

$$b_i^* = \arg\min_{b_i} ||\mathbf{Y}_i - \mathbf{X}_i * \mathbf{b}_i|| + \lambda |\mathbf{b}_i|$$

Ridge regression: smoothness

$$b_i^* = \arg\min_{b_i} ||\mathbf{Y}_i - \mathbf{X}_i * \mathbf{b}_i|| + \lambda ||\mathbf{b}_i||$$

Elastic net: sparsity + smoothness

Goals for today

- Background
 - Components of the regulation machinery
 - Transcriptional gene regulation
- Challenges in regulatory networks
 - Element identification
 - Network identification
 - Extensions to inference
 - Network structure analysis
- Evolution of regulatory networks
 - Comparative functional genomics

Extensions to vanilla network inference approaches

- Making methods more scalable
- Imposing biological constraints
- Integrating other types of data

Concept: Expression modules

$$\min_{C} \sum_{k=1}^{|C|} \sum_{i,j} d(X_i, X_j)$$

Learning regulatory programs of modules instead of genes

Combine per-gene and per-module network inference methods

How to impose module constraints?

Keep regulators same but params different

Group lasso for module constrained per gene model

$$\mathbf{B}^* = \arg\min_{B} ||\mathbf{Y} - \mathbf{X}\mathbf{B}||_2^2 + \lambda \sum_{i=1}^p ||\mathbf{B}_{i,:}||_2$$

Example coefficient matrix

A regulator is selected for all or no genes

Integrating data as structure priors

Revisiting Structure learning

- Bayesian framework
- $\mathcal G$ is an unknown random variable
- Optimize posterior distribution of graph given data

$$P(\mathcal{G}|D) = P(D|\mathcal{G})P(\mathcal{G})$$
 $P(\mathcal{G}|D) \propto P(\mathcal{G}) \int P(D,\theta|\mathcal{G})d\theta$ $P(\mathcal{G}|D) = P(D|\mathcal{G},\theta_{MAP})P(\mathcal{G})$ Maximum a posteriori estimate

A structure prior to integrate data

• Let P(G) distributes independently over edges

$$P(\mathcal{G}) = \begin{bmatrix} \prod_{X_i \to X_j} P(X_i \to X_j) \end{bmatrix} \begin{bmatrix} \prod_{X_i \neq X_j} (1 - P(X_i \to X_j)) \end{bmatrix}$$
 Present edges Absent edges

Define prior probability of edge presence/absence

$$P(X_i \to X_j) = \frac{1}{1 + exp(-(\beta_1 + \beta_2 w_{ij}))}$$
 Graph structure complexity Prior strength Edge prior strength

Behavior of graph structure prior

$$P(X_i \to X_j) = \frac{1}{1 + exp(-(\beta_1 + \beta_2 w_{ij}))}$$

Effect of prior on graph structure

Goals for today

- Background
 - Components of the regulation machinery
 - Transcriptional gene regulation
- Challenges in regulatory networks
 - Element identification
 - Network identification
 - Extensions to inference
 - Network structure analysis
- Evolution of regulatory networks
 - Comparative functional genomics

Hierarchical nature

- Regulators are hierarchically organized with different roles per level
 - Top: Master regulators influence many genes
 - Middle: Bottle necks directly targeting most genes
 - Bottom: Essential regulators

Hierarchical structure of *S. cerevisiae* regulatory network

Modularity of regulatory networks

Modular: Graph with densely connected subgraphs

- Genes in modules involved in similar functions and coregulated
- Modules can be identified using graph partitioning algorithms
 - Markov Clustering Algorithm
 - Girvan-Newman Algorithm

Structural network motifs

Feed-forward loops involved in speeding up in response of target gene

Network motifs often have specific functions

Goals for today

- Background
 - Transcriptional gene regulation
 - cis and trans elements
- Challenges in regulatory networks
 - Element identification
 - Network identification
 - Extensions to inference
 - Structural properties of networks
- Evolution of regulatory networks
 - Comparative functional genomics

Why understand evolution of regulatory networks

Importance in evolution of complex body plan:

"Although a variety of ways of thinking about evolution have been proposed, the evolution of the body plan is fundamentally a system-level problem to which GRN structure/function provides the most compelling direct access" Peter & Davidson, 2011

Factors affecting regulatory network evolution

trans-factors

- 1. Transcription factors
- 2. Chromatin modelers
- 3. Signaling proteins
- 4. Environment

cis-factors

- 1. Binding sites
- 2. Nucleosomes
- 3. Histone marks

Key questions

- How conserved are regulatory networks?
 - Elements
 - Connections
- How are different conservation/divergence scenarios implemented?
- What is the ancestral state?
- Do regulatory differences explain functional innovation?

Comparative genomics approaches to understanding regulation evolution

Phylogenetic relationships to compare sequence differences, and relate to phenotypic traits.

Scenarios of conservation & divergence

Network of Organism 1

Network of Organism 2

How do regulatory networks rewire?

Wolbach, Thompson et al., Current Opinions in Genetics & Dev. 2009

But, we know only a handful of examples from the pre-mRNA era.

Comparative, genomics approaches to understanding regulation evolution

Systematic approaches to compare regulatory networks

- One species at a time
 - Infer a regulatory network per species
 - Compare networks across species
- Learn multiple networks simultaneously
 - Use phylogenetic relationships to constrain the network structure

Learning networks one species at a time

Comparing networks across species

Easy case: One to one orthologs:

Not so easy cases: One to many orthologs:

Defining an edge match

$$E_Y^{AB}: \{(i,j) \in \{A_{y1}, A_{y2}\} \times \{B_{y1}, B_{y2}\}\}$$

$$A_X \to B_X \text{ is conserved in } Y \text{ if } E_Y^{AB} \neq \emptyset$$

Using yeast Ascomycetes to understand regulatory evolution

Respiro-fermentative: use fermentation (ethanol production) when grown on glucose **Respirative:** use respiration when grown on glucose

300 million years of evolution

Experiments for capturing functional response

Wapinski et al. 2010, Thompson et al. In prep.

Topologically networks look similar, but have very few common edges

C. glabrata network

S. cerevisiae network

Conservation										
0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.5

Pairwise network similarity

Take-away messages

- Transcriptional regulatory networks determine context specific gene expression
 - Important in development and disease
- Most of the regulatory network is not known
- Machine learning approaches to network inference
 - Supervised
 - Unsupervised
- Extensions to existing inference algorithms
 - Incorporate biological intuition
 - Integrate different types of datasets
- Evolution of regulatory networks
 - Major player for diversifying phenotypic diversity of organism
 - Comparative functional genomics brings new opportunities
 - Need phylogenetically-aware network analysis algorithms

For further reading, discussions, chats

sroy@biostat.wisc.edu