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Overview

e RNA-Seq technology
e The RNA-Seq quantification problem

e Generative probabilistic models and Expectation-Maximization for the
quantification task

e Probabilistic splice graph models for analysis of alternative splicing



What | want you to get from this lecture

e \What is RNA-Seq?
e How is RNA-Seqg used to measure the abundances of RNAs within cells?

e \What probabilistic models and algorithms are used for analyzing RNA-Seq?



Measuring transcription the old way: Microarrays
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e Requires knowledge of gene
sequences



RNA-Seq technology

e | everages rapidly advancing sequencing technology (e.g., lllumina, SOLID)
¢ Transcriptome analog to whole genome shotgun sequencing
e Two key differences from genome sequencing:

1. Transcripts sequenced at different levels of coverage - expression levels

2. Sequences already known (in many cases) - coverage is measurement



RNA-Seq protocol
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CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT
CCCGCGCGCTTAGGCTACTCG
TCACACATCTCTAGCTAGCAT
CATGCTAGCTATGCCTATCTA

CACCCCGGGGATATATAGGAT



RNA-Seq data
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~20 million reads



technology

e RNA-Seq gives you reads from
the ends of a random sample
of fragments in your library

e Without additional data this
only gives information about
relative abundances

e Additional information, such as
levels of “spike-in” transcripts,
are needed for absolute
measurements

RNA-Seq Is a relative abundance measurement
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Issues with relative abundance measures

Sample 1 Sample 1 Sample 2 Sample 2
absolute relative absolute relative
abundance abundance abundance abundance

e Changes in absolute expression of high expressors is a major factor

e Normalization is required for comparing samples in these situations



Advantages of RNA-Seq over microarrays

¢ No reference sequence needed

¢ \With microarrays, limited to the probes on the chip
e | ow background noise
e | arge dynamic range

e 10° compared to 102 for microarrays

e High technical reproducibility



Tasks with RNA-Seq data

e Assembly:
e Given: RNA-Seq reads (and possibly a genome sequence)
e Do: reconstruct full-length transcript sequences from the reads
e Quantification:
e Given: RNA-Seq reads and transcript sequences
e Do: Estimate the relative abundances of transcripts (“gene expression”)
e Differential expression:
e Given: RNA-Seq reads from two different samples and transcript sequences

e Do: Predict which transcripts have different abundances between the two samples



The basics of guantification from RNA-Seq data

¢ Basic assumption:

f; = P(read from transcript i) = Z 7,/

/\

expression level length

¢ Normalization factor is the mean length of expressed transcripts



The basics of guantification from RNA-Seq data

¢ Estimate the probability of reads being generated from a given
transcript by counting the number of reads that align to that transcript

. ¢; — # reads mapping to transcript |
N « total # of mappable reads

e Convert to expression levels by normalizing by transcript length
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The basics of guantification from RNA-Seq data

e Basic quantification algorithm
e Align reads against a set of reference transcript sequences
e Count the number of reads aligning to each transcript

e Convert read counts into relative expression levels



Counts to expression levels

e RPKM - Reads Per Kilobase per Million mapped reads
C;

RPKM for gene i = 10? x /N

* TPM - Transcripts Per Million
&

(estimate of) TPM for isoform i = 10° x Z x N

e Prefer TPM to RPKM/FPKM because of normalization factor

* TPM is a technology-independent measure (simply a fraction)



What if reads do not uniquely map to transcripts®?

e The approach described assumes that every read can be uniquely aligned to
a single transcript

e This is generally not the case
e Some genes have similar sequences - gene families, repetitive sequences

¢ Alternative splice forms of a gene share a significant fraction of sequence



Are multireads really a problem??

Dataset |% unmapped| % unique | % multireads | % filtered
Mouse liver
(Mortazavi et 40.2 44.4 9.2 0.2
al. 2008)
Maize 47.5 25.0 07.1 0.4
simulation

25 base reads, 2 mismatches allowed

e Still an issue with longer and paired reads

e mouse 75 base reads: 10% multireads (single-end), 8% (paired-end)

e Multireads arise due to homology, not chance similarity




Distributions of alignment counts
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Some options for handling multireads

¢ Discard all multireads, estimate based on uniquely mapping reads only
e Discard multireads, but use “unique length” of each transcript in calculations
e “Rescue” multireads by allocating (fractions of) them to the transcripts
e Three step algorithm
1. Estimate abundances based on uniquely mapping reads only

2. For each multiread, divide it between the transcripts to which it maps,
proportionally to their abundances estimated in the first step

3.Recompute abundances based on updated counts for each transcript



An observation about the rescue method

e Note that at the end of the rescue algorithm, we have an updated set of
abundance estimates

¢ These new estimates could be used to reallocate the multireads

e And then we could update our abundance estimates once again

¢ And repeat!

e This is the intuition behind the statistical approach to this problem



Our solution - a generative probabillistic model

transcript probabilities (expression levels)

number of reads
transcript
fragment length

start position

read length
orientation

quality scores

read sequence
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Quantification as maximum likelihood inference

¢ Observed data likelihood

r,/,q|f) = HSje S‘S‘S‘PR =Ty Ly = Uy Q. = s Sy = 4, Fyo = k, Oy, = 0|Gyy = )

n=1 +=0 7=0 k=0 0=0

¢ |ikelihood function is concave w.r.t. ©

e Has a global maximum (or global maxima)

e Expectation-Maximization for optimization

“RNA-Seq gene expression estimation with read mapping uncertainty”
Li, B., Ruotti, V., Stewart, R., Thomson, J., Dewey, C.
Bioinformatics, 2010



Approximate iInference with read alignments

N L; L; 1
r,(,ql0) = H HS‘S‘S‘PR =7, Ly = ln, Qp = G, Sp = j, Fr, = k,0p, = 0|G, = 9)
n=1 =0 7=0 k=0 0=0

e Full likelihood computation requires O(NML?) time
e N (number of reads) ~ 107
e M (number of transcripts) ~ 104
e | (average transcript length) ~ 103

e Approximate by alignment

’qw H Z HZP(RR = Tp, Ln = gnaQn — {n, an’jko — 1‘Gn — Z)

n=1 (i,j,k,0)enE

all local alignments of read n with at most x mismatches



HMM Interpretation

transcript 1

()
04 o transcript 2 .
start 05 g
. 05 - transcript 3 .
Onr ‘

transcript M
hidden: read start positions O

observed: read sequences

Learning parameters: Baum-\Welch Algorlthm (EM for HMMS)
Approximation: Only consider a subset of paths for each read



=M Algorithm

e Expectation-Maximization for RNA-Seq
e E-step: Compute expected read counts given current expression levels

e M-step: Compute expression values maximizing likelihood given expected
read counts

¢ Rescue algorithm = 1 iteration of EM



Improved accuracy over unigue and rescue
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predicted expression level

Improving accuracy on repetitive genomes: maize
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Probabilistically-weighted alignments
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—Xpected read count visualization
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Alternative splicing
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Forms of alternative splicing

Exon skipping

Mutually exclusive exons

:

Alternative 5' donor sites

I

Alternative 3' acceptor sites

Intron retention



Alternative splicing analysis with RNA-Seq

I I I |

\V

¢ RNA-Seq: powerful for analyzing e Analysis challenges
alternative splicing

e Genes with many isoforms
e Discovery of novel splice junctions

e Non-identifiability of abundances
¢ Precise quantification of splice
events: low background, large

. e Difficulty in de novo assembly of
dynamic range

full-length isoforms



Combinatorial explosion of distinct isoforms

e Combinatorial explosion of the number of possible isoforms for each gene

¢ |Insufficient data to accurately estimate abundances of thousands of isoforms
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Non-identifiability of full-length isoform models

Lacroix et al. 2008:; Hiller et al. 2009



e RNA-Seq reads/fragments are
relatively short

e Often insufficient to reconstruct
full-length isoforms in the
presence of alternative splicing

¢ Transcriptome assemblies
perhaps best left in “graph” form

¢ De Bruijn graph

e String graphs

.. .ATTCGCAA. . .TCATCGGAT

De Novo transcriptome assembly

De Bruijn
graph (k =5)

Graph constructed
- by the “Butterfly”
COmpacﬁng module of Trinity

é&\ L (Grabherr et al. 2011)

b
PN Compact graph
with reads

i Extracting sequences

TTCGCAA. . .TGATCGGAT. .. .
Transcripts



Our solution: Probabilistic Splice Graphs

e Splice Graphs (Heber et al. 2002)
e Compact representation of possible isoforms for a gene
e Statistical models with splice graphs (Jenkins et al. 2006)

e Modeling of EST data

08 04—
%35/5‘\—” B e —

L. Legault and C. Dewey. Inference of alternative splicing from
RNA-Seq data with probabilistic splice graphs. Submitted.



Probabilistic Splice Graph Complexity
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Advantages of PSGs

e Compact description of the possible isoforms of a gene

e Models the frequencies of potentially exponentially many isoforms with a
polynomial number of parameters

e Models dependence or independence of splice events

e The parameters of a PSG are more often identifiable than a model that has a
parameter for every possible isoform

e Splice graphs are naturally produced structures from transcriptome
assemblers



The PSG parameter inference problem

e Given: RNA-Seq reads and a PSG structure

CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA

GGAAANAAGACCCTGTTGAGC ~ ~
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT

CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT

e Do: Estimate the (maximum likelihood) parameters for the model

7 7




[dentifiability of PSGs with RNA-Seq data

e |dentifiability: P(D|M,60) = P(D|M,0"),VD < 0 =6’

e Proposition: If for all edges (u, v), there exists a read that is uniquely derived
from that edge, or v has indegree 1 and there exists a read that is uniquely
derived from v, then the PSG is identifiable.

not identifiable e —ee

dentifiable > Qem— N




A model of RNA-Seqg from PSGs

e RSEM model extended to probabilistic splice graphs
e Efficient inference of parameters (splice event frequencies) with EM

* Dynamic programming algorithms — polynomial time inference for genes
with an exponential number of isoforms

1 i = j

Probability of including
{Zk Oékjf(ia k) 1#7]

vertex j given that vertex i f(i:9) = | _Z w(s) =
was in transcript I

. 1 . .
Expected prefix length ~ de(@) = it 5= D> f(0,5)eidp(5)
J

Expected suffix length de(i) = i+ oujdg(h)
J



—M for PSG parameter estimation

e E-step: compute the expectation of the number of times edge (i,j) is used

Z(b,s)eﬁ(r) g(8,%,7)
E|Zyni] =
Z(b,s)éw(r) g<8)
g(s) = [f(0,s1)w(s)

f(0,51)w(s) (i,5) € s
fQ0,2)a; f (g, 81)w(s) if 3 path from v; to s1
f(0,s1)w(s)f(s|s],%)a; if 3 path from s4 to v;

g(s,i,7) =

\ 0 otherwise

e M-step: maximize the completely-observed likelihood given the edge counts
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e DSCAM running time test

¢ 23,976 isoforms

e Simulated 10 reads
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Next steps for modeling

e Graph construction

RNA-Seqg with PSGs
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e Exon discovery

e Splice junction
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Summary

e RNA-Seq is likely the future of transcriptome analysis

e The major challenge in analyzing RNA-Seq data: the reads are much shorter
than the transcripts from which they are derived

e Tasks with RNA-Seq data thus require handling hidden information: which
gene/isoform gave rise to a given read

e The Expectation-Maximization algorithm is extremely powerful in these
situations

e Alternative splicing complicates matters further

e Probabilistic splice graphs are compact and efficient models for RNA-Seg
data with alternatively spliced genes (dynamic programming!)



