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Overview

• RNA-Seq technology

• The RNA-Seq quantification problem

• Generative probabilistic models and Expectation-Maximization for the 
quantification task

• Probabilistic splice graph models for analysis of alternative splicing



What I want you to get from this lecture

• What is RNA-Seq?

• How is RNA-Seq used to measure the abundances of RNAs within cells?

• What probabilistic models and algorithms are used for analyzing RNA-Seq?



Measuring transcription the old way: Microarrays
• Each spot has “probes” for a certain 

gene

• Probe: a DNA sequence 
complementary to a certain gene

• Relies on complementary 
hybridization

• Intensity/color of light from each 
spot is measurement of the number 
of transcripts for a certain gene in a 
sample

• Requires knowledge of gene 
sequences



RNA-Seq technology

• Leverages rapidly advancing sequencing technology (e.g., Illumina, SOLiD)

• Transcriptome analog to whole genome shotgun sequencing

• Two key differences from genome sequencing:

1. Transcripts sequenced at different levels of coverage - expression levels

2. Sequences already known (in many cases) - coverage is measurement



RNA-Seq protocol

Sample 
RNA

Amplified 
cDNA

cDNA 
fragments

reverse 
transcription 

+ PCR fragmentation
sequencing 

machine

reads
CCTTCNCACTTCGTTTCCCAC

TTTTTNCAGAGTTTTTTCTTG

GAACANTCCAACGCTTGGTGA

GGAAANAAGACCCTGTTGAGC

CCCGGNGATCCGCTGGGACAA

GCAGCATATTGATAGATAACT

CTAGCTACGCGTACGCGATCG

CATCTAGCATCGCGTTGCGTT

CCCGCGCGCTTAGGCTACTCG

TCACACATCTCTAGCTAGCAT

CATGCTAGCTATGCCTATCTA

CACCCCGGGGATATATAGGAT



RNA-Seq data
@HWUSI-EAS1789_0001:3:2:1708:1305#0/1
CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG
+HWUSI-EAS1789_0001:3:2:1708:1305#0/1
VVULVBVYVYZZXZZ\ee[a^b`[a\a[\\a^^^\
@HWUSI-EAS1789_0001:3:2:2062:1304#0/1
TTTTTNCAGAGTTTTTTCTTGAACTGGAAATTTTT
+HWUSI-EAS1789_0001:3:2:2062:1304#0/1
a__[\Bbbb`edeeefd`cc`b]bffff`ffffff
@HWUSI-EAS1789_0001:3:2:3194:1303#0/1
GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA
+HWUSI-EAS1789_0001:3:2:3194:1303#0/1
ZZ[[VBZZY][TWQQZ\ZS\[ZZXV__\OX`a[ZZ
@HWUSI-EAS1789_0001:3:2:3716:1304#0/1
GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG
+HWUSI-EAS1789_0001:3:2:3716:1304#0/1
aaXWYBZVTXZX_]Xdccdfbb_\`a\aY_^]LZ^
@HWUSI-EAS1789_0001:3:2:5000:1304#0/1
CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA
+HWUSI-EAS1789_0001:3:2:5000:1304#0/1
aaaaaBeeeeffffehhhhhhggdhhhhahhhadh

name
sequence
qualities

read

1 Illumina (GAIIX) lane

~20 million reads

read1

read2

paired-end reads



RNA-Seq is a relative abundance measurement 
technology

• RNA-Seq gives you reads from 
the ends of a random sample 
of fragments in your library

• Without additional data this 
only gives information about 
relative abundances

• Additional information, such as 
levels of “spike-in” transcripts, 
are needed for absolute 
measurements

RNA
sample

cDNA
fragments

reads



Issues with relative abundance measures

Gene
Sample 1 
absolute 

abundance

Sample 1 
relative 

abundance

Sample 2 
absolute 

abundance

Sample 2 
relative 

abundance

1 20 10% 20 5%

2 20 10% 20 5%

3 20 10% 20 5%

4 20 10% 20 5%

5 20 10% 20 5%

6 100 50% 300 75%

• Changes in absolute expression of high expressors is a major factor

• Normalization is required for comparing samples in these situations



Advantages of RNA-Seq over microarrays

• No reference sequence needed

• With microarrays, limited to the probes on the chip

• Low background noise

• Large dynamic range

• 105 compared to 102 for microarrays

• High technical reproducibility



Tasks with RNA-Seq data

• Assembly: 

• Given: RNA-Seq reads (and possibly a genome sequence)

• Do: reconstruct full-length transcript sequences from the reads

• Quantification: 

• Given: RNA-Seq reads and transcript sequences

• Do: Estimate the relative abundances of transcripts (“gene expression”)

• Differential expression:

• Given: RNA-Seq reads from two different samples and transcript sequences

• Do: Predict which transcripts have different abundances between the two samples



The basics of quantification from RNA-Seq data

• Basic assumption: 

• Normalization factor is the mean length of expressed transcripts

Z =
X

i

�i⇥
0
i

�i = P (read from transcript i) = Z�1⇥i⇤
0
i

expression level length



The basics of quantification from RNA-Seq data

• Estimate the probability of reads being generated from a given 
transcript by counting the number of reads that align to that transcript

• Convert to expression levels by normalizing by transcript length

✓̂i =
ci
N

⌧̂i /
✓̂i
`0i

# reads mapping to transcript i
total # of mappable reads



The basics of quantification from RNA-Seq data

• Basic quantification algorithm

• Align reads against a set of reference transcript sequences

• Count the number of reads aligning to each transcript

• Convert read counts into relative expression levels



Counts to expression levels

• RPKM - Reads Per Kilobase per Million mapped reads

• TPM - Transcripts Per Million

• Prefer TPM to RPKM/FPKM because of normalization factor

• TPM is a technology-independent measure (simply a fraction)

RPKM for gene i = 10

9 ⇥ ci
�0iN

TPM for isoform i = 10

6 ⇥ Z ⇥ ci
�0iN

(estimate of)



What if reads do not uniquely map to transcripts?

• The approach described assumes that every read can be uniquely aligned to 
a single transcript

• This is generally not the case

• Some genes have similar sequences - gene families, repetitive sequences

• Alternative splice forms of a gene share a significant fraction of sequence



Are multireads really a problem?

• Still an issue with longer and paired reads

• mouse 75 base reads: 10% multireads (single-end), 8% (paired-end)

• Multireads arise due to homology, not chance similarity

Data set % unmapped  % unique % multireads % filtered

Mouse liver
(Mortazavi et 

al. 2008)
46.2 44.4 9.2 0.2

Maize 
simulation 47.5 25.0 27.1 0.4

25 base reads, 2 mismatches allowed



Distributions of alignment counts
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Some options for handling multireads

• Discard all multireads, estimate based on uniquely mapping reads only

• Discard multireads, but use “unique length” of each transcript in calculations

• “Rescue” multireads by allocating (fractions of) them to the transcripts

• Three step algorithm

1. Estimate abundances based on uniquely mapping reads only

2. For each multiread, divide it between the transcripts to which it maps,  
proportionally to their abundances estimated in the first step

3.Recompute abundances based on updated counts for each transcript



An observation about the rescue method

• Note that at the end of the rescue algorithm, we have an updated set of 
abundance estimates

• These new estimates could be used to reallocate the multireads

• And then we could update our abundance estimates once again

• And repeat!

• This is the intuition behind the statistical approach to this problem



Our solution - a generative probabilistic model

Gn

Fn

Sn

On

L1
n L2

n

Q1
n Q2

n

R1
n R2

n

N

✓

fragment length

read length

quality scores

paired read

transcript probabilities (expression levels)

number of reads

transcript

start position

orientation

read sequence

P (g, f , s,o, ⇥,q, r|�) =
NY

n=1

P (gn|�)P (fn|gn)P (sn|fn, gn)P (on|gn)P (qn)P (⇥n|fn)P (rn|gn, fn, sn, on, ⇥n, qn)



• Observed data likelihood

• Likelihood function is concave w.r.t. θ

• Has a global maximum (or global maxima)

• Expectation-Maximization for optimization

Quantification as maximum likelihood inference

P (r, ⇥,q|�) =
NY

n=1

MX

i=0

�
i

LiX

j=0

LiX

k=0

1X

o=0

P (R
n

= r
n

, L
n

= ⇥
n

, Q
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= q
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, S
n
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= k,O
n

= o|G
n

= i)

“RNA-Seq gene expression estimation with read mapping uncertainty”
Li, B., Ruotti, V., Stewart, R., Thomson, J., Dewey, C.

Bioinformatics, 2010



• Full likelihood computation requires O(NML2) time

• N (number of reads) ~ 107

• M (number of transcripts) ~ 104

• L (average transcript length) ~ 103

• Approximate by alignment

Approximate inference with read alignments

all local alignments of read n with at most x mismatches

P (r, ⇥,q|�) =
NY

n=1

X

(i,j,k,o)2�x

n

�iP (Rn = rn, Ln = ⇥n, Qn = qn, Znijko = 1|Gn = i)

P (r, ⇥,q|�) =
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HMM Interpretation

start

transcript 1

transcript 2

transcript 3

transcript M

...
✓1
✓2
✓3

✓M

hidden: read start positions
observed: read sequences

Learning parameters: Baum-Welch Algorithm (EM for HMMs)
Approximation: Only consider a subset of paths for each read 

...



EM Algorithm

• Expectation-Maximization for RNA-Seq

• E-step: Compute expected read counts given current expression levels

• M-step: Compute expression values maximizing likelihood given expected 
read counts

• Rescue algorithm ≈ 1 iteration of EM



Improved accuracy over unique and rescue
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Improving accuracy on repetitive genomes: maize
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Probabilistically-weighted alignments
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Expected read count visualization
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Alternative splicing



Forms of alternative splicing



Alternative splicing analysis with RNA-Seq

• RNA-Seq: powerful for analyzing 
alternative splicing

• Discovery of novel splice junctions

• Precise quantification of splice 
events: low background, large 
dynamic range

• Analysis challenges

• Genes with many isoforms

• Non-identifiability of abundances

• Difficulty in de novo assembly of  
full-length isoforms



Combinatorial explosion of distinct isoforms

• Combinatorial explosion of the number of possible isoforms for each gene

• Insufficient data to accurately estimate abundances of thousands of isoforms
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Drosophila Dscam: more than 38,000 possible isoforms
(Schmucker et al., 2000)



Non-identifiability of full-length isoform models

(A)

(C)

(B) 10
6

64
4

64

Lacroix et al. 2008; Hiller et al. 2009

24

4



De novo transcriptome assembly

• RNA-Seq reads/fragments are 
relatively short

• Often insufficient to reconstruct 
full-length isoforms in the 
presence of alternative splicing 

• Transcriptome assemblies 
perhaps best left in “graph” form

• De Bruijn graph

• String graphs
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complexity of overlaps between variants. Finally, Butterfly (Fig. 1c) 
analyzes the paths taken by reads and read pairings in the context of 
the corresponding de Bruijn graph and reports all plausible transcript 
sequences, resolving alternatively spliced isoforms and transcripts 
derived from paralogous genes. Below, we describe each of Trinity’s 
modules.

Inchworm assembles contigs greedily and efficiently
Inchworm efficiently reconstructs linear transcript contigs in six steps 
(Fig. 1a). Inchworm (i) constructs a k-mer dictionary from all sequence 
reads (in practice, k = 25); (ii) removes likely error-containing k-mers 
from the k-mer dictionary; (iii) selects the most frequent k-mer in the 
dictionary to seed a contig assembly, excluding both low-complexity 

For transcriptome assembly, each path in the graph represents a possible 
transcript. A scoring scheme applied to the graph structure can rely on 
the original read sequences and mate-pair information to discard non-
sensical solutions (transcripts) and compute all plausible ones.

Applying the scheme of de Bruijn graphs to de novo assembly of RNA-
Seq data represents three critical challenges: (i) efficiently construct-
ing this graph from large amounts (billions of base pairs) of raw data; 
(ii) defining a suitable scoring and enumeration algorithm to recover 
all plausible splice forms and paralogous transcripts; and (iii) providing 
robustness to the noise stemming from sequencing errors and other 
artifacts in the data. In particular, sequencing errors would introduce a 
large number of false nodes, resulting in a massive graph with millions 
of possible (albeit mostly implausible) paths.

Here, we present Trinity, a method for the 
efficient and robust de novo reconstruction of 
transcriptomes, consisting of three software 
modules: Inchworm, Chrysalis and Butterfly, 
applied sequentially to process large volumes 
of RNA-Seq reads. We evaluated Trinity on 
data from two well-annotated species—one 
microorganism (fission yeast) and one mam-
mal (mouse)—as well as an insect (the whitefly 
Bemisia tabaci), whose genome has not yet been 
sequenced. In each case, Trinity recovers most 
of the reference (annotated) expressed tran-
scripts as full-length sequences, and resolves 
alternative isoforms and duplicated genes, per-
forming better than other available transcrip-
tome de novo assembly tools, and similarly to 
methods relying on genome alignments.

RESULTS
Trinity: a method for de novo 
transcriptome assembly
In contrast to de novo assembly of a genome, 
where few large connected sequence graphs 
can represent connectivities among reads 
across entire chromosomes, in assembling 
transcriptome data we expect to encounter 
numerous individual disconnected graphs, 
each representing the transcriptional com-
plexity at nonoverlapping loci. Accordingly, 
Trinity partitions the sequence data into these 
many individual graphs, and then processes 
each graph independently to extract full-
length isoforms and tease apart transcripts 
derived from paralogous genes.

In the first step in Trinity, Inchworm 
assembles reads into the unique sequences of 
transcripts. Inchworm (Fig. 1a) uses a greedy 
k-mer–based approach for fast and efficient 
transcript assembly, recovering only a single 
(best) representative for a set of alternative 
variants that share k-mers (owing to alterna-
tive splicing, gene duplication or allelic varia-
tion). Next, Chrysalis (Fig. 1b) clusters related 
contigs that correspond to portions of alterna-
tively spliced transcripts or otherwise unique 
portions of paralogous genes. Chrysalis then 
constructs a de Bruijn graph for each cluster 
of related contigs, each graph reflecting the 

cba
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Figure 1  Overview of Trinity. (a) Inchworm assembles the read data set (short black lines, top) by 
greedily searching for paths in a k-mer graph (middle), resulting in a collection of linear contigs (color 
lines, bottom), with each k-mer present only once in the contigs. (b) Chrysalis pools contigs (colored 
lines) if they share at least one k – 1-mer and if reads span the junction between contigs, and then it 
builds individual de Bruijn graphs from each pool. (c) Butterfly takes each de Bruijn graph from Chrysalis 
(top), and trims spurious edges and compacts linear paths (middle). It then reconciles the graph with 
reads (dashed colored arrows, bottom) and pairs (not shown), and outputs one linear sequence for each 
splice form and/or paralogous transcript represented in the graph (bottom, colored sequences).
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Graph constructed 
by the “Butterfly” 
module of Trinity

(Grabherr et al. 2011)



Our solution: Probabilistic Splice Graphs

• Splice Graphs (Heber et al. 2002)

• Compact representation of possible isoforms for a gene

• Statistical models with splice graphs (Jenkins et al. 2006)

• Modeling of EST data

(A)

(C)

(B)

(A)

(C)

(B)

(A)

(C)

(B)

0.2

0.8
0.6

0.4

0.32
0.48
0.08
0.12

L. Legault and C. Dewey. Inference of alternative splicing from 
RNA-Seq data with probabilistic splice graphs. Submitted.



Probabilistic Splice Graph Complexity
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Advantages of PSGs

• Compact description of the possible isoforms of a gene

• Models the frequencies of potentially exponentially many isoforms with a 
polynomial number of parameters

• Models dependence or independence of splice events

• The parameters of a PSG are more often identifiable than a model that has a 
parameter for every possible isoform

• Splice graphs are naturally produced structures from transcriptome 
assemblers



The PSG parameter inference problem

• Given: RNA-Seq reads and a PSG structure

• Do: Estimate the (maximum likelihood) parameters for the model

(A)

(C)

(B)

CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT

(A)

(C)

(B)

?

?
?

?



Identifiability of PSGs with RNA-Seq data

• Identifiability: 

• Proposition: If for all edges (u, v), there exists a read that is uniquely derived 
from that edge, or v has indegree 1 and there exists a read that is uniquely 
derived from v, then the PSG is identifiable.

(A)

(C)

(B)

identifiable

not identifiable

Probabilistic splice graph models for RNA-Seq

will then be addressed, followed by a description of how the Expectation-
Maximization (EM) algorithm is used to determine maximum likelihood
parameters. We then provide a simple likelihood ratio test for detecting genes
that are differentially processed between two samples.

3.1 PSG notation and derived quantities

In this section, we introduce notation for a PSG and quantities computable
from a PSG. These quantities will be of use in specifying the RNA-Seq
model and for efficiently computing parameters using the EM algorithm.

A PSG is a DAG, G = (V,E), with a start vertex, v0, and an end vertex,
vM , where M = |V |. The only vertex in the graph with indegree = 0 is
v0 and the only vertex with outdegree = 0 is vM . A PSG is canonical if
there exist no edges (vi, vj) for which outdegree(vi) = indegree(vj) =

1. Note that any PSG can be reduced to an equivalent canonical PSG by
merging vertices.

Each vertex, vi, of a PSG is associated with a sequence, which we denote
by �i. The sequences of the start and end vertices are the empty string.
Each edge, (vi, vj), in the graph has a weight ↵ij 2 [0, 1], and we require
that 8i,

P
j ↵ij = 1. The weight, w(s), of a subpath, s, through G is the

product of the weights of the edges it traverses:

w(s) =

|s|�1Y

i=1

↵si,si+1

A transcript (isoform) is represented by a path t, with t1 = 0 and t|t| = M .
The relative abundance or probability of a transcript t is defined as the weight
of its path, w(t).

There are a number of useful conditional quantities that can be computed
from a PSG. First, we can compute the conditional probability that vertex vj
is included in a transcript given that vi is in the transcript. We denote this
quantity by f(i, j) and compute it with the recurrence

f(i, j) =
X

s:s1=i,s|s|=j

w(s) =

(
1 i = j
P

k ↵kjf(i, k) i 6= j

Other useful quantities involve the lengths of transcripts or subpaths. We
denote by `i the length of the sequence associated with vertex i, i.e.,
`i = |�i|. The length of a subpath s is simply the sum of the lengths of
the sequences associated with its vertices: l(s) =

P
i `si . We define the

expected prefix length dp(i) for vertex vi to be the expected length of the
subpath beginning at v0 and ending at vi; analogously, the expected suffix
length dq(i) for vertex vi is the expected length of the subpath beginning at
vi and ending at vM . These quantities can be calculated via the recurrences:

dp(i) = `i +
1

f(0, i)

X

j

f(0, j)↵jidp(j) (1)

dq(i) = `i +
X

j

↵ijdq(j) (2)

The expected length of transcript of this gene is the expected suffix length of
v0 or the expected prefix length of vM , dq(0) = dp(M).

3.2 A PSG RNA-Seq model

We now present a generative model for RNA-Seq data given a PSG, G, that
describes the relative abundances of isoforms of a gene. This model will
allow use to estimate the parameters of G given RNA-Seq data. Our model
is equivalent to those previously used when a set of full-length isoforms is
specified (Li et al., 2010a; Trapnell et al., 2010; Katz et al., 2010).

We assume that an RNA-Seq data set represents N fragments, each
independently derived from one of the possible isoforms allowed by G.
The RNA-Seq data consist of reads from one (single-end) or both (paired-
end) ends of each of the N fragments, each read of length L. To
simplify our presentation, we will describe a model of single-end reads
without sequencing error. We provide the extension to paired-end reads in
the supplementary material. The single-end model involves four random
variables for each of the N reads:

• Rn: the sequence of read n

• Tn: the full transcript path from which read n was derived

• Sn: the subpath of Tn from which read n is derived

• Bn: the position in the sequence of Sn,1 at which read n begins.

Of these random variables, only Rn is observed. The only parameters of the
model are the PSG edge weights ↵ = {↵ij}ij . Supposing that we observe
all of the random variables, the completely-observed data likelihood is:

P (r, t, s, b|↵) =
NY

n=1

P (rn|sn, bn)P (sn, bn|tn)P (tn|↵)

Assuming no sequencing error, we have that

P (rn|sn, bn) =
(
1 if (bn, sn) ! rn

0 otherwise

where (bn, sn) ! rn denotes that rn is the length L sequence starting
at position bn in the concatenation of sequences �sn,1 , . . . ,�sn,|s| . If
sn,|s| = M , then the concatenated sequence also includes an infinitely
long sequence of As, representing the poly(A) tail at the end of a typical
eukaryotic protein-coding transcript. We will often use the notation ⇡(r) to
refer to the set {(b, s) : (b, s) ! r}. In addition, we say that r is derived

from s if there exists some b such that (b, s) ! r.
We assume that the position bn, at which a read begins, is uniformly

distributed across the length of the transcript from which it is derived. Thus,

P (sn, bn|tn) =
(

1
l(tn) sn 2 tn, bn 2 [1, `sn,1 ]

0 otherwise

Finally we assume that the probability of generating a read from a specific
transcript, tn, is proportional to the product of the relative frequency of the
transcript, w(tn), and the length of the transcript:

P (tn|↵) = D(↵)�1w(tn)`(tn)

where D(↵) =

P
t w(t)`(t), which is the expected length of a transcript

given the PSG.
Simulating data from the model is straightforward given the description

in this section. However, when the number of possible isoforms is large,
simulation can be done more efficiently by taking advantage of the fact that

P (s, b) = D(↵)�1f(0, s1)w(s)

which allows one to avoid explicitly sampling a specific transcript. Details
of our simulation methods are given in the supplementary material.

3.3 Identifiability of the PSG RNA-Seq model

An important aspect of the transcript quantification task is the identifiability
of the model used for inference (Hiller et al., 2009; Lacroix et al., 2008). A
statistical model M with parameters ✓ is identifiable if

P (D|M, ✓) = P (D|M, ✓0), 8D , ✓ = ✓0.

In words, for an identifiable model, different parameter values give rise to
different probability distributions over the data. Identifiability of isoform
quantification models is a concern for technologies such as microarrays and
RNA-Seq because isoforms often share a large fraction of their sequence and
these technologies only probe short segments of them at a time. For example,
the frequencies of the isoforms shown in Figure 2B are not identifiable
given short single-end RNA-Seq data. In an encouraging result, Hiller
et al. (2009) found that the isoform frequencies for 97% of a subset of
alternatively spliced human genes are identifiable using single-end RNA-
Seq data. However, this result was obtained using the RefSeq human gene
set (Pruitt et al., 2009), which is conservative and thus has a small number
of alternative isoforms for each gene. With gene sets that contain a greater
number of alternative isoforms, the percentage of genes with identifiable
isoform frequencies is expected to decrease significantly (Hiller et al., 2009).
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A model of RNA-Seq from PSGs

• RSEM model extended to probabilistic splice graphs

• Efficient inference of parameters (splice event frequencies) with EM

• Dynamic programming algorithms → polynomial time inference for genes 
with an exponential number of isoforms

Probabilistic splice graph models for RNA-Seq

will then be addressed, followed by a description of how the Expectation-
Maximization (EM) algorithm is used to determine maximum likelihood
parameters. We then provide a simple likelihood ratio test for detecting genes
that are differentially processed between two samples.

3.1 PSG notation and derived quantities

In this section, we introduce notation for a PSG and quantities computable
from a PSG. These quantities will be of use in specifying the RNA-Seq
model and for efficiently computing parameters using the EM algorithm.

A PSG is a DAG, G = (V,E), with a start vertex, v0, and an end vertex,
vM , where M = |V |. The only vertex in the graph with indegree = 0 is
v0 and the only vertex with outdegree = 0 is vM . A PSG is canonical if
there exist no edges (vi, vj) for which outdegree(vi) = indegree(vj) =

1. Note that any PSG can be reduced to an equivalent canonical PSG by
merging vertices.

Each vertex, vi, of a PSG is associated with a sequence, which we denote
by �i. The sequences of the start and end vertices are the empty string.
Each edge, (vi, vj), in the graph has a weight ↵ij 2 [0, 1], and we require
that 8i,

P
j ↵ij = 1. The weight, w(s), of a subpath, s, through G is the

product of the weights of the edges it traverses:

w(s) =

|s|�1Y

i=1

↵si,si+1

A transcript (isoform) is represented by a path t, with t1 = 0 and t|t| = M .
The relative abundance or probability of a transcript t is defined as the weight
of its path, w(t).

There are a number of useful conditional quantities that can be computed
from a PSG. First, we can compute the conditional probability that vertex vj
is included in a transcript given that vi is in the transcript. We denote this
quantity by f(i, j) and compute it with the recurrence

f(i, j) =
X

s:s1=i,s|s|=j

w(s) =

(
1 i = j
P

k ↵kjf(i, k) i 6= j

Other useful quantities involve the lengths of transcripts or subpaths. We
denote by `i the length of the sequence associated with vertex i, i.e.,
`i = |�i|. The length of a subpath s is simply the sum of the lengths of
the sequences associated with its vertices: l(s) =

P
i `si . We define the

expected prefix length dp(i) for vertex vi to be the expected length of the
subpath beginning at v0 and ending at vi; analogously, the expected suffix
length dq(i) for vertex vi is the expected length of the subpath beginning at
vi and ending at vM . These quantities can be calculated via the recurrences:

dp(i) = `i +
1

f(0, i)

X

j

f(0, j)↵jidp(j) (1)

dq(i) = `i +
X

j

↵ijdq(j) (2)

The expected length of transcript of this gene is the expected suffix length of
v0 or the expected prefix length of vM , dq(0) = dp(M).

3.2 A PSG RNA-Seq model

We now present a generative model for RNA-Seq data given a PSG, G, that
describes the relative abundances of isoforms of a gene. This model will
allow use to estimate the parameters of G given RNA-Seq data. Our model
is equivalent to those previously used when a set of full-length isoforms is
specified (Li et al., 2010a; Trapnell et al., 2010; Katz et al., 2010).

We assume that an RNA-Seq data set represents N fragments, each
independently derived from one of the possible isoforms allowed by G.
The RNA-Seq data consist of reads from one (single-end) or both (paired-
end) ends of each of the N fragments, each read of length L. To
simplify our presentation, we will describe a model of single-end reads
without sequencing error. We provide the extension to paired-end reads in
the supplementary material. The single-end model involves four random
variables for each of the N reads:

• Rn: the sequence of read n

• Tn: the full transcript path from which read n was derived

• Sn: the subpath of Tn from which read n is derived

• Bn: the position in the sequence of Sn,1 at which read n begins.

Of these random variables, only Rn is observed. The only parameters of the
model are the PSG edge weights ↵ = {↵ij}ij . Supposing that we observe
all of the random variables, the completely-observed data likelihood is:

P (r, t, s, b|↵) =
NY

n=1

P (rn|sn, bn)P (sn, bn|tn)P (tn|↵)

Assuming no sequencing error, we have that

P (rn|sn, bn) =
(
1 if (bn, sn) ! rn

0 otherwise

where (bn, sn) ! rn denotes that rn is the length L sequence starting
at position bn in the concatenation of sequences �sn,1 , . . . ,�sn,|s| . If
sn,|s| = M , then the concatenated sequence also includes an infinitely
long sequence of As, representing the poly(A) tail at the end of a typical
eukaryotic protein-coding transcript. We will often use the notation ⇡(r) to
refer to the set {(b, s) : (b, s) ! r}. In addition, we say that r is derived

from s if there exists some b such that (b, s) ! r.
We assume that the position bn, at which a read begins, is uniformly

distributed across the length of the transcript from which it is derived. Thus,

P (sn, bn|tn) =
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1
l(tn) sn 2 tn, bn 2 [1, `sn,1 ]

0 otherwise

Finally we assume that the probability of generating a read from a specific
transcript, tn, is proportional to the product of the relative frequency of the
transcript, w(tn), and the length of the transcript:

P (tn|↵) = D(↵)�1w(tn)`(tn)

where D(↵) =

P
t w(t)`(t), which is the expected length of a transcript

given the PSG.
Simulating data from the model is straightforward given the description

in this section. However, when the number of possible isoforms is large,
simulation can be done more efficiently by taking advantage of the fact that

P (s, b) = D(↵)�1f(0, s1)w(s)

which allows one to avoid explicitly sampling a specific transcript. Details
of our simulation methods are given in the supplementary material.

3.3 Identifiability of the PSG RNA-Seq model

An important aspect of the transcript quantification task is the identifiability
of the model used for inference (Hiller et al., 2009; Lacroix et al., 2008). A
statistical model M with parameters ✓ is identifiable if

P (D|M, ✓) = P (D|M, ✓0), 8D , ✓ = ✓0.

In words, for an identifiable model, different parameter values give rise to
different probability distributions over the data. Identifiability of isoform
quantification models is a concern for technologies such as microarrays and
RNA-Seq because isoforms often share a large fraction of their sequence and
these technologies only probe short segments of them at a time. For example,
the frequencies of the isoforms shown in Figure 2B are not identifiable
given short single-end RNA-Seq data. In an encouraging result, Hiller
et al. (2009) found that the isoform frequencies for 97% of a subset of
alternatively spliced human genes are identifiable using single-end RNA-
Seq data. However, this result was obtained using the RefSeq human gene
set (Pruitt et al., 2009), which is conservative and thus has a small number
of alternative isoforms for each gene. With gene sets that contain a greater
number of alternative isoforms, the percentage of genes with identifiable
isoform frequencies is expected to decrease significantly (Hiller et al., 2009).
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statistical model M with parameters ✓ is identifiable if
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In words, for an identifiable model, different parameter values give rise to
different probability distributions over the data. Identifiability of isoform
quantification models is a concern for technologies such as microarrays and
RNA-Seq because isoforms often share a large fraction of their sequence and
these technologies only probe short segments of them at a time. For example,
the frequencies of the isoforms shown in Figure 2B are not identifiable
given short single-end RNA-Seq data. In an encouraging result, Hiller
et al. (2009) found that the isoform frequencies for 97% of a subset of
alternatively spliced human genes are identifiable using single-end RNA-
Seq data. However, this result was obtained using the RefSeq human gene
set (Pruitt et al., 2009), which is conservative and thus has a small number
of alternative isoforms for each gene. With gene sets that contain a greater
number of alternative isoforms, the percentage of genes with identifiable
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EM for PSG parameter estimation

• E-step: compute the expectation of the number of times edge (i,j) is used

• M-step: maximize the completely-observed likelihood given the edge counts

LeGault et al
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Fig. 2. An example gene for which a explicit model of all possible isoform
frequencies is not identifiable, whereas a PSG model for the gene is
identifiable, given short single-end RNA-Seq reads. We assume that the
reads are shorter than the long middle exon and thus that a read identifies
at most one splice junction. (A) The gene model. (B) The four possible
isoforms of the gene. (C) The first order exon graph PSG for the gene.

A PSG RNA-Seq model can alleviate this problem by explicitly modeling
only those full-length isoforms or combinations of splice events that allow
for identifiability. In the supplementary material, we state some general
conditions under which a PSG is guaranteed to be identifiable. A convenient
set of specific conditions that are sufficient, but not necessary, for the
identifiability of a PSG is stated in the following proposition.

PROPOSITION 1. For a PSG RNA-Seq model with canonical form G =

(V,E), if 8(v, u) 2 E, there is a read that is uniquely derived from either

(v, u) or (u), then the model is identifiable.

A proof of this proposition is provided in the supplementary material.
This proposition provides an easy check for whether a PSG is identifiable:
simply determine if each edge or its target vertex can produce a unique read.
These criteria are generally much easier to satisfy than those required for
the identifiability of full-length isoform models. For example, the PSG in
Figure 2C is identifiable given short single-end reads, even though a model
of the full-length isoform frequencies is not.

3.4 Parameter estimation using EM

We now present our methodology for estimating the maximum likelihood
(ML) parameters (edge weights, ↵) of a PSG given RNA-Seq data. For
simplicity of presentation, we again focus on the fixed-length single-end
read model. Because the reads are the only observed random variables, the
observed data likelihood involves a sum over all possible alignments for a
read and all transcript paths that are compatible with those alignments.

P (r|↵) =

NY

n=1

X

b,s,t

P (rn|s, b)P (s, b|t)P (t|↵) (3)

= D(↵)�N
NY

n=1

X

(b,s)2⇡(r)

X

t:s2t

w↵(t) (4)

As w↵(t) is a function of ↵, this function is difficult to optimize directly.
Therefore, we use the EM algorithm to perform this optimization, as is
common for models with large numbers of latent variables. Unfortunately,
since it is currently unknown whether Equation 3 is concave, we are only
guaranteed to find a local maximum with EM. The EM algorithm has us

iteratively optimize the function

Q(↵|↵(t)
) = �N logD(↵) +

X

i,j

zij log↵ij (5)

where zij is the expected number of reads that are derived from a transcript
that contains edge (vi, vj), given parameters ↵(t). The E-step of the
algorithm involves the computation of the zij values, and the M-step
involves maximizing Equation 5.

3.4.1 E-step In the E-step, we calculate zij = E↵(t) [Zij ], where
Zij =

P
n Znij and Znij is an indicator random variable that takes value

one when the transcript from which read n is derived includes edge (vi, vj).
The expected value of Znij is computed as

E[Znij ] =

P
(b,s)2⇡(r) g(s, i, j)P

(b,s)2⇡(r) g(s)
(6)

where

g(s) = f(0, s1)w(s)

g(s, i, j) =

8
>>>><

>>>>:

f(0, s1)w(s) (i, j) 2 s

f(0, i)↵ijf(j, s1)w(s) if 9 path from vj to s1

f(0, s1)w(s)f(s|s|, i)↵ij if 9 path from s|s| to vi

0 otherwise

Assuming that each read aligns to a small number of positions within the
PSG, the E-step requires only O(N |E|) time as all of the f(i, j) values can
be precomputed at the beginning of the E-step using dynamic programming.

3.4.2 M-step Given the expected Zij values from the expectation step,
the model parameters must now be adjusted to reflect them. With the
constraint that 8i,

P
j ↵ij = 1, it can be shown that Equation 5 is

maximized when, 8i, j,

↵ij =

zij
(dp(i)+dq(j))P
k

zik
(dp(i)+dq(k))

(7)

Thus, the maximum likelihood estimate for ↵ij is directly proportional to the
number of times the edge is used, and inversely proportional to the average
length of a transcript containing that edge.

Unfortunately, it is difficult to directly solve for the maximizing values
of ↵ij (note that dp(i) and dq(j) are also functions of ↵). Therefore, we
iteratively apply Equation 7 until convergence.

3.5 Testing for differential processing

To test for differential processing of a gene between two samples we use a
simple likelihood ratio test. Given two read sets, R1 and R2, we compute
the ML parameters, ↵̂1 and ↵̂2, for the two sets separately, as well as the
ML parameters, ↵̂12, for the two sets combined. We test the null hypothesis
that the parameters for the two samples are the same by computing the ratio

P (R1|↵̂1
)P (R2|↵̂2

)

P (R1 [R2|↵̂12
)

and assigning a p-value using a �2 distribution with k degrees of freedom,
where k is the number of free parameters in the PSG.

4 RESULTS
We performed a variety of experiments on both simulated and real
RNA-Seq data to analyze the accuracy and performance of our
PSG methods. On simulated data, we first compared the accuracy
of our method’s splice event frequency estimates with those of a
more simplistic junction-read-based method. With simulated data
from the Drosophila gene Dscam, which has the potential to
produce tens of thousands of possible isoforms, we demonstrate
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Fig. 2. An example gene for which a explicit model of all possible isoform
frequencies is not identifiable, whereas a PSG model for the gene is
identifiable, given short single-end RNA-Seq reads. We assume that the
reads are shorter than the long middle exon and thus that a read identifies
at most one splice junction. (A) The gene model. (B) The four possible
isoforms of the gene. (C) The first order exon graph PSG for the gene.
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for identifiability. In the supplementary material, we state some general
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set of specific conditions that are sufficient, but not necessary, for the
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(v, u) or (u), then the model is identifiable.

A proof of this proposition is provided in the supplementary material.
This proposition provides an easy check for whether a PSG is identifiable:
simply determine if each edge or its target vertex can produce a unique read.
These criteria are generally much easier to satisfy than those required for
the identifiability of full-length isoform models. For example, the PSG in
Figure 2C is identifiable given short single-end reads, even though a model
of the full-length isoform frequencies is not.

3.4 Parameter estimation using EM

We now present our methodology for estimating the maximum likelihood
(ML) parameters (edge weights, ↵) of a PSG given RNA-Seq data. For
simplicity of presentation, we again focus on the fixed-length single-end
read model. Because the reads are the only observed random variables, the
observed data likelihood involves a sum over all possible alignments for a
read and all transcript paths that are compatible with those alignments.
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PSG methods. On simulated data, we first compared the accuracy
of our method’s splice event frequency estimates with those of a
more simplistic junction-read-based method. With simulated data
from the Drosophila gene Dscam, which has the potential to
produce tens of thousands of possible isoforms, we demonstrate
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Fig. 2. An example gene for which a explicit model of all possible isoform
frequencies is not identifiable, whereas a PSG model for the gene is
identifiable, given short single-end RNA-Seq reads. We assume that the
reads are shorter than the long middle exon and thus that a read identifies
at most one splice junction. (A) The gene model. (B) The four possible
isoforms of the gene. (C) The first order exon graph PSG for the gene.

A PSG RNA-Seq model can alleviate this problem by explicitly modeling
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for identifiability. In the supplementary material, we state some general
conditions under which a PSG is guaranteed to be identifiable. A convenient
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that the parameters for the two samples are the same by computing the ratio
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Efficient inference for highly-spliced genes

• DSCAM running time test

• 23,976 isoforms

• Simulated 10 reads
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Next steps for modeling RNA-Seq with PSGs

• Graph construction

• Exon discovery

• Splice junction 
discovery

• Model selection

• Learning 
dependencies 
between splice 
events
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Summary

• RNA-Seq is likely the future of transcriptome analysis

• The major challenge in analyzing RNA-Seq data: the reads are much shorter 
than the transcripts from which they are derived

• Tasks with RNA-Seq data thus require handling hidden information: which 
gene/isoform gave rise to a given read

• The Expectation-Maximization algorithm is extremely powerful in these 
situations

• Alternative splicing complicates matters further

• Probabilistic splice graphs are compact and efficient models for RNA-Seq 
data with alternatively spliced genes (dynamic programming!)


