Measuring transcriptomes with RNA-Seq

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2012
Colin Dewey
cdewey@biostat.wisc.edu

Overview

- RNA-Seq technology
- The RNA-Seq quantification problem
- Generative probabilistic models and Expectation-Maximization for the quantification task
- Probabilistic splice graph models for analysis of alternative splicing

What I want you to get from this lecture

- What is RNA-Seq?
- How is RNA-Seq used to measure the abundances of RNAs within cells?
- What probabilistic models and algorithms are used for analyzing RNA-Seq?

Measuring transcription the old way: Microarrays

- Each spot has "probes" for a certain gene
- Probe: a DNA sequence complementary to a certain gene
- Relies on complementary hybridization
- Intensity/color of light from each spot is measurement of the number of transcripts for a certain gene in a sample
- Requires knowledge of gene sequences

RNA-Seq technology

- Leverages rapidly advancing sequencing technology (e.g., Illumina, SOLiD)
- Transcriptome analog to whole genome shotgun sequencing
- Two key differences from genome sequencing:
 - 1. Transcripts sequenced at different levels of coverage expression levels
 - 2. Sequences already known (in many cases) coverage is measurement

RNA-Seq protocol

RNA-Seq data

@HWUSI-EAS1789_0001:3:2:1708:1305#0/1 \leftarrow CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG ← +HWUSI-EAS1789_0001:3:2:1708:1305#0/1 @HWUSI-EAS1789_0001:3:2:2062:1304#0/1 TTTTTNCAGAGTTTTTTTTTTGAACTGGAAATTTTT +HWUSI-EAS1789_0001:3:2:2062:1304#0/1 a__[\Bbbb`edeeefd`cc`b]bffff`fffff @HWUSI-EAS1789_0001:3:2:3194:1303#0/1 GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA +HWUSI-EAS1789_0001:3:2:3194:1303#0/1 $ZZ[[VBZZY][TWQQZ\ZS\[ZZXV__\OX\a[ZZ$ @HWUSI-EAS1789_0001:3:2:3716:1304#0/1 GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG +HWUSI-EAS1789_0001:3:2:3716:1304#0/1 aaXWYBZVTXZX_]Xdccdfbb_\`a\aY_^]LZ^ @HWUSI-EAS1789_0001:3:2:5000:1304#0/1 CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA +HWUSI-EAS1789_0001:3:2:5000:1304#0/1 aaaaaBeeeeffffehhhhhhggdhhhhahhhadh

name sequence read qualities

paired-end reads
read1
read2

1 Illumina (GAIIX) Iane

~20 million reads

RNA-Seq is a *relative* abundance measurement technology

- RNA-Seq gives you reads from the ends of a random sample of fragments in your library
- Without additional data this only gives information about relative abundances
- Additional information, such as levels of "spike-in" transcripts, are needed for absolute measurements

Issues with relative abundance measures

Gene	Sample 1 absolute abundance	Sample 1 relative abundance	Sample 2 absolute abundance	Sample 2 relative abundance
1	20	10%	20	5%
2	20	10%	20	5%
3	20	10%	20	5%
4	20	10%	20	5%
5	20	10%	20	5%
6	100	50%	300	75%

- Changes in absolute expression of high expressors is a major factor
- Normalization is required for comparing samples in these situations

Advantages of RNA-Seq over microarrays

- No reference sequence needed
 - With microarrays, limited to the probes on the chip
- Low background noise
- Large dynamic range
 - 10⁵ compared to 10² for microarrays
- High technical reproducibility

Tasks with RNA-Seq data

- Assembly:
 - Given: RNA-Seq reads (and possibly a genome sequence)
 - Do: reconstruct full-length transcript sequences from the reads
- Quantification:
 - Given: RNA-Seq reads and transcript sequences
 - Do: Estimate the relative abundances of transcripts ("gene expression")
- Differential expression:
 - Given: RNA-Seq reads from two different samples and transcript sequences
 - Do: Predict which transcripts have different abundances between the two samples

The basics of quantification from RNA-Seq data

Basic assumption:

$$\theta_i = P(\text{read from transcript } i) = Z^{-1}\tau_i\ell_i'$$
 expression level length

Normalization factor is the mean length of expressed transcripts

$$Z = \sum_{i} \tau_{i} \ell'_{i}$$

The basics of quantification from RNA-Seq data

 Estimate the probability of reads being generated from a given transcript by counting the number of reads that align to that transcript

$$\hat{\theta_i} = \frac{c_i}{N} \longleftarrow \text{# reads mapping to transcript i}$$
 total # of mappable reads

Convert to expression levels by normalizing by transcript length

$$\hat{ au_i} \propto rac{\hat{ heta_i}}{\ell_i'}$$

The basics of quantification from RNA-Seq data

- Basic quantification algorithm
 - Align reads against a set of reference transcript sequences
 - Count the number of reads aligning to each transcript
 - Convert read counts into relative expression levels

Counts to expression levels

• RPKM - Reads Per Kilobase per Million mapped reads

RPKM for gene
$$i = 10^9 \times \frac{c_i}{\ell_i' N}$$

TPM - Transcripts Per Million

(estimate of) TPM for isoform
$$i = 10^6 \times Z \times \frac{c_i}{\ell_i' N}$$

- Prefer TPM to RPKM/FPKM because of normalization factor
- TPM is a technology-independent measure (simply a fraction)

What if reads do not uniquely map to transcripts?

- The approach described assumes that every read can be uniquely aligned to a single transcript
- This is generally not the case
 - Some genes have similar sequences gene families, repetitive sequences
 - Alternative splice forms of a gene share a significant fraction of sequence

Are multireads really a problem?

Data set	% unmapped	% unique	% multireads	% filtered
Mouse liver (Mortazavi et al. 2008)	46.2	44.4	9.2	0.2
Maize simulation	47.5	25.0	27.1	0.4

25 base reads, 2 mismatches allowed

- Still an issue with longer and paired reads
 - mouse 75 base reads: 10% multireads (single-end), 8% (paired-end)
- Multireads arise due to homology, not chance similarity

Distributions of alignment counts

Some options for handling multireads

- Discard all multireads, estimate based on uniquely mapping reads only
- Discard multireads, but use "unique length" of each transcript in calculations
- "Rescue" multireads by allocating (fractions of) them to the transcripts
 - Three step algorithm
 - 1. Estimate abundances based on uniquely mapping reads only
 - 2. For each multiread, divide it between the transcripts to which it maps, proportionally to their abundances estimated in the first step
 - 3. Recompute abundances based on updated counts for each transcript

An observation about the rescue method

- Note that at the end of the rescue algorithm, we have an updated set of abundance estimates
- These new estimates could be used to reallocate the multireads
- And then we could update our abundance estimates once again
- And repeat!
- This is the intuition behind the statistical approach to this problem

Our solution - a generative probabilistic model

 $P(\mathbf{g}, \mathbf{f}, \mathbf{s}, \mathbf{o}, \ell, \mathbf{q}, \mathbf{r} | \theta) = \prod_{n=1}^{N} P(g_n | \theta) P(f_n | g_n) P(s_n | f_n, g_n) P(o_n | g_n) P(q_n) P(\ell_n | f_n) P(r_n | g_n, f_n, s_n, o_n, \ell_n, q_n)$

Quantification as maximum likelihood inference

Observed data likelihood

$$P(\mathbf{r}, \ell, \mathbf{q} | \theta) = \prod_{n=1}^{N} \sum_{i=0}^{M} \theta_i \sum_{j=0}^{L_i} \sum_{k=0}^{L_i} \sum_{o=0}^{L_i} P(R_n = r_n, L_n = \ell_n, Q_n = q_n, S_n = j, F_n = k, O_n = o | G_n = i)$$

- Likelihood function is concave w.r.t. θ
 - Has a global maximum (or global maxima)
- Expectation-Maximization for optimization

Approximate inference with read alignments

$$P(\mathbf{r}, \ell, \mathbf{q} | \theta) = \prod_{n=1}^{N} \sum_{i=0}^{M} \theta_i \sum_{j=0}^{L_i} \sum_{k=0}^{L_i} \sum_{o=0}^{1} P(R_n = r_n, L_n = \ell_n, Q_n = q_n, S_n = j, F_n = k, O_n = o | G_n = i)$$

- Full likelihood computation requires O(NML²) time
 - N (number of reads) ~ 10⁷
 - M (number of transcripts) ~ 10⁴
 - L (average transcript length) ~ 10³
- Approximate by alignment

$$P(\mathbf{r}, \ell, \mathbf{q} | \theta) = \prod_{n=1}^{N} \sum_{(i,j,k,o) \in \pi_n^x} \theta_i P(R_n = r_n, L_n = \ell_n, Q_n = q_n, Z_{nijko} = 1 | G_n = i)$$

all local alignments of read n with at most x mismatches

HMM Interpretation

Learning parameters: Baum-Welch Algorithm (EM for HMMs) Approximation: Only consider a subset of paths for each read

EM Algorithm

- Expectation-Maximization for RNA-Seq
 - E-step: Compute expected read counts given current expression levels
 - M-step: Compute expression values maximizing likelihood given expected read counts
- Rescue algorithm ≈ 1 iteration of EM

Improved accuracy over unique and rescue

Gene-level expression estimation

Gene-level expression estimation

Probabilistically-weighted alignments

Expected read count visualization

Alternative splicing

Forms of alternative splicing

Alternative splicing analysis with RNA-Seq

- RNA-Seq: powerful for analyzing alternative splicing
 - Discovery of novel splice junctions
 - Precise quantification of splice events: low background, large dynamic range

- Analysis challenges
 - Genes with many isoforms
 - Non-identifiability of abundances
 - Difficulty in *de novo* assembly of full-length isoforms

Combinatorial explosion of distinct isoforms

- Combinatorial explosion of the number of possible isoforms for each gene
- Insufficient data to accurately estimate abundances of thousands of isoforms

Drosophila *Dscam*: more than 38,000 possible isoforms (Schmucker et al., 2000)

Non-identifiability of full-length isoform models

Lacroix et al. 2008; Hiller et al. 2009

De novo transcriptome assembly

- RNA-Seq reads/fragments are relatively short
- Often insufficient to reconstruct full-length isoforms in the presence of alternative splicing
- Transcriptome assemblies perhaps best left in "graph" form
 - De Bruijn graph
 - String graphs

Our solution: Probabilistic Splice Graphs

- Splice Graphs (Heber et al. 2002)
 - Compact representation of possible isoforms for a gene
- Statistical models with splice graphs (Jenkins et al. 2006)
 - Modeling of EST data

L. Legault and C. Dewey. Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs. *Submitted*.

Probabilistic Splice Graph Complexity

Advantages of PSGs

- Compact description of the possible isoforms of a gene
 - Models the frequencies of potentially exponentially many isoforms with a polynomial number of parameters
 - Models dependence or independence of splice events
- The parameters of a PSG are more often identifiable than a model that has a parameter for every possible isoform
- Splice graphs are naturally produced structures from transcriptome assemblers

The PSG parameter inference problem

Given: RNA-Seq reads and a PSG structure

• Do: Estimate the (maximum likelihood) parameters for the model

Identifiability of PSGs with RNA-Seq data

- Identifiability: $P(D|M,\theta) = P(D|M,\theta'), \forall D \Leftrightarrow \theta = \theta'$
- Proposition: If for all edges (u, v), there exists a read that is uniquely derived from that edge, or v has indegree 1 and there exists a read that is uniquely derived from v, then the PSG is identifiable.

A model of RNA-Seq from PSGs

- RSEM model extended to probabilistic splice graphs
- Efficient inference of parameters (splice event frequencies) with EM
 - Dynamic programming algorithms → polynomial time inference for genes with an exponential number of isoforms

Probability of including vertex j given that vertex i was in transcript

$$f(i,j) = \sum_{s:s_1 = i, s_{|s|} = j} w(s) = \begin{cases} 1 & i = j \\ \sum_k \alpha_{kj} f(i,k) & i \neq j \end{cases}$$

Expected prefix length
$$d_p(i) = \ell_i + \frac{1}{f(0,i)} \sum_j f(0,j) \alpha_{ji} d_p(j)$$

Expected suffix length
$$d_q(i) = \ell_i + \sum_j \alpha_{ij} d_q(j)$$

EM for PSG parameter estimation

E-step: compute the expectation of the number of times edge (i,j) is used

$$E[Z_{nij}] = \frac{\sum_{(b,s) \in \pi(r)} g(s,i,j)}{\sum_{(b,s) \in \pi(r)} g(s)}$$

$$g(s) = f(0,s_1)w(s)$$

$$g(s,i,j) = \begin{cases} f(0,s_1)w(s) & (i,j) \in s \\ f(0,i)\alpha_{ij}f(j,s_1)w(s) & \text{if } \exists \text{ path from } v_j \text{ to } s_1 \\ f(0,s_1)w(s)f(s_{|s|},i)\alpha_{ij} & \text{if } \exists \text{ path from } s_{|s|} \text{ to } v_i \\ 0 & \text{otherwise} \end{cases}$$

M-step: maximize the completely-observed likelihood given the edge counts

$$\alpha_{ij} = \frac{\frac{z_{ij}}{(d_p(i) + d_q(j))}}{\sum_{k} \frac{z_{ik}}{(d_p(i) + d_q(k))}}$$

Efficient inference for highly-spliced genes

- DSCAM running time test
 - 23,976 isoforms
 - Simulated 10 reads

Method	RSEM	Cufflinks	Line graph PSG
Running time	Not possible	> 15 hours (> 50 GB RAM)	< 1 second

Next steps for modeling RNA-Seq with PSGs

- Graph construction
 - Exon discovery
 - Splice junction discovery
- Model selection
 - Learning dependencies between splice events

Summary

- RNA-Seq is likely the future of transcriptome analysis
- The major challenge in analyzing RNA-Seq data: the reads are much shorter than the transcripts from which they are derived
- Tasks with RNA-Seq data thus require handling hidden information: which gene/isoform gave rise to a given read
- The Expectation-Maximization algorithm is extremely powerful in these situations
- Alternative splicing complicates matters further
- Probabilistic splice graphs are compact and efficient models for RNA-Seq data with alternatively spliced genes (dynamic programming!)