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Outline

* Variation detection
— Array technologies
— Whole-genome sequencing

 The basics of GWAS

— Testing SNPs for association
— Correcting for multiple-testing



Variation detecting
technologies

* Array-based technologies
— Relies on hybridization of sample DNA
to pre-specified “probes”
— Each probe is chosen to measure a
single possible variant: SNP, CNV, etc.

* Sequencing-based technologies

— Whole-genome shotgun sequence,
usually at low coverage (e.g., 4-8x)

— Align reads to “reference” genome:
mismatches, indels, etc. indicate
variations

Affymetrix SNP chip

[1lumina HiSeq sequencer



Array-based technologies
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* Currently two major players
* Affymetrix Genome-Wide
Human SNP Arrays

— Used for HapMap project,
Navigenics service

* |llumina BeadChips

— Used by 23andMe,
deCODEme services



Affymetrix SNP arrays

* Probes for ~900K SNPs
* Another ~900K probes for CNV analysis

* Differential hybridization — one probe for

each possible SNP allele
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lllumina BeadChips

Infinium HD Assay
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* Array with probes
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The Infinium HD Assay protocol features single-tube sample prepa-
ration and whole-genome amplification without PCR or ligation

steps, significantly reducing labor and sample-handling errors.



GWAS data

Individual | Genotype at | Genotype at | Genotype at Genotype at | Disease?
Position 1 Position 2 Position 3 Position M
1 CC AG GG AA N

2 AC AA TG AA
3 AA AA GG AT
N AC AA TT AT N

* N individuals genotyped at M positions
* Disease status (or other phenotype) is measured for each individual



GWAS task

* Given: genotypes and phenotypes of
iIndividuals in a population

* Do: Identify which genomic positions
are associated with a given phenotype



Can we identify causal SNPs?

» Typically only genotype at 1 million sites
 Humans vary at more than 10 million sites
» Unlikely that an associated SNP is causal

* “Tag SNPs": however, associated SNPs

“tag” blocks of the genome that contain the
causal variant

? Genotyped SNP
Ungenotyped causal SNP
? Ungenotyped SNP

?? 2 9?19 ? ? 9?9 9?9

haplotype block: interval in which little recombination has been observed




Direct and indirect

associlations
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Basics of association testing

* Test each site individually for
association with a statistical test

— each site is assigned a p-value for the null

hypothesis that the site is not associated
with the phenotype

» Correct for the fact that we are testing
multiple hypotheses



Basic genotype test

« Assuming binary phenotype (e.g., disease/no
disease)

« Test for significant association with Pearson’s Chi-
square test or Fisher’'s Exact Test

genotype
| A |
AA AT TT
Disease 40 30 30
phenotype )
No disease 70 20 10

Chi-square test p-value = 4.1e-5 (2 degrees of freedom)
Fisher’s exact test p-value = 3.4e-5



Armitage (trend) test

« Can gain more statistical power if we
can assume that probability of trait is
linear in the number of one of the alleles
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Trend test example

genotype
| A |
AA AT TT
henotype { Discase 40 30 30
No disease 70 20 10
Efgiif}on 0.36 0.60 0.75

Trend in Proportions test p-value = 8.1e-6

(note that this is a smaller p-value than from the basic genotype test)



GWAS Challenges

* Population structure
* Multiple testing
* Interacting variants



Population structure issues

o |f certain populations disproportionally
represent cases or controls, then
spurious associations may be identified
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Multiple testing

* In the genome-age, we have the abillity
to perform large numbers of statistical
tests simultaneously
— SNP associations (~1 million)

— Gene differential expression tests (~ 50
thousand)

* Do traditional p-value thresholds apply
In these cases?



Expression in BRCA1 and BRCA2
Mutation-Positive Tumors
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o Hedenfalk et al., New England Journal

ESTs of Medicine 344:539-548, 2001.
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« 7 patients with BRCA1 mutation-positive tumors vs.
7 patients with BRCA?2 mutation-positive tumors

e 5631 genes assayed



Expression in BRCA1 and BRCA2
Mutation-Positive Tumors

« Key question: which genes are differentially
expressed in these two sets of tumors?

« Methodology: for each gene, use a
statistical test to assess the hypothesis that
the expression levels differ in the two sets




Hypothesis Testing

« consider two competing hypotheses for a given gene:

— null hypothesis: the expression levels 1n the first set
come from the same distribution as the levels in the
second set

— alternative hypothesis: they come from different
distributions

* we first calculate a test statistic for these measurements,
and then determine its p-value

* p-value: the probability of observing a test statistic that 1s
as extreme or more extreme than the one we have,
assuming the null hypothesis is true



Calculating a p-value

1. calculate test statistic
(e.g. T statistic)

2. see how much mass in null
distribution with value this
extreme or more

0.017 0.017

if test statistic 1s here, p = 0.034



The Multiple Testing Problem

1f we’re testing one gene, the p-value 1s a useful measure
of whether the variation of the gene’s expression across
two groups 1s significant

suppose that most genes are not differentially expressed
(this 1s the typical situation)

if we’re testing 5000 genes that don’t have a significant
change in their expression (i1.e. the null hypothesis holds),
we’d still expect about 250 of them to have p-values < 0.05

Can think of p-value as the false positive rate over null
genes



Family-wise error rate

* One way to deal with the multiple testing
problem 1s to control the probability of
rejecting at least one null hypothesis when
all genes are null

 This is the family-wise error rate (FWER)

* Suppose you tested 5000 genes and
predicted that all genes with p-values < 0.05
were differentially expressed

FWER=1-(1-0.05"" =1

— you are guaranteed to be wrong at least once!



Bonferroni correction

Simplest approach

Choose a p-value threshold 3 such that the
FWER is £ o

a=1-(1-p)

where g 1s the number of genes (tests)

for fg <<1, /J’zg
8

For g=5000 and & =0.05 we set a p-value
threshold of 1e-5



Loss of power with FWER

« FWER, and Bonferroni in particular, reduce
our power to reject null hypotheses

— As g gets large, p-value threshold gets very small
* For expression analysis, FWER and false
positive rate are not really the primary concern
— We can live with false positives

— We just don’t want too many of them relative to the
total number of genes called significant



The False Discovery Rate

[Benjamini & Hochberg ‘95; Storey & Tibshirani ‘02]

p-value

0.0001
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rank

e suppose we pick a threshold, and call
genes above this threshold
“significant”
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 the false discovery rate is the expected
fraction of these that are mistakenly
called significant (1.e. are truly null)
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The False Discovery Rate

F@t)=#{nullp,<t;i=1...m}

gene  p-value rank

0.0001 # genes
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S@t)=#{p,<t;i=1...m}
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FDR(f) = E[F(t)] E[F®)]

S| E[S®)]

m T O W™ =0Q™Ta
— 0 00 3 Q| B W=



The False Discovery Rate

* to compute the FDR for a threshold 7, we need to estimate
E[ F(¢) Jand E[ S(¢) ]

FDR(f) = E[F(t)] E[F®)]

S(¢) [S (¢ )] —— estimate by the observed S(¢)

S@t)=#{p,<t;i=1...m}
F@t)=#{nullp,<t;i=1...m}

* so how can we estimate E[ F(¢) |?



Benjamini-Hochberg

Suppose the fraction of genes that are
truly null is very close to 1

Then

E[F(t)]= E[#{nullpl. <t 1= 1...m}] ~ mt
because p-values are uniformly distributed
over [0,1] under the null model

Suppose we choose a threshold t and
observe that S(t) = k

FDR(f) = ng(“:)w] _ n:




Benjamini-Hochberg
procedure

» Suppose we want the FDR < a

* Sort the p-values of your genes so that
they are in increasing order

Foy=Foy...= K,

» Select the largest k such that

k

F,=—a

(



What Fraction of the Genes are Truly Null?

 consider the histogram of p-values from Hedenfalk et al.
] — 1includes both null and alternative genes

— but we expect null p-values to be uniformly distributed

estimated proportion of null p-values
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Figure from Storey & Tibshirani PNAS 100(16), 2002.
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Storey & Tibshirani approach

estimated proportion of

null p-values

\ /' # genes

A

FDR(t) ~ Ty XM X1
#ip; =t}

gene  p-value rank g-value
C 0.0001 1 0.001 q(p,)=min FDR(t)
F 0.001 2 0.005 =i
G 0.016 3 0.053
J 0.019 < 0.0475
1 0.030 2 0.060 1 4 pick minimum FDR for
B 0.052 6 0.08 all greater thresholds
A 0.10 7 0.14
D 0.35 8 0.44
H 0.51 9 0.57
E 0.70 10 0.70



g-values vs. p-values for Hedenfalk et al.
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Figure from Storey & Tibshirani PNAS 100(16), 2002.



FDR Summary

in many high-throughput experiments, we want to know
what 1s different across a two sets of conditions/individuals
(e.g. which genes are differentially expressed)

because of the multiple testing problem, p-values may not
be so informative in such cases

the FDR, however, tells us which fraction of significant
features are likely to be null

g-values based on the FDR can be readily computed from
p-values (see Storey’ s package QVALUE)



Back to GWAS: Interacting

variants

* Most traits are complex: not the result of a
single gene or genomic position
* |deally, we’'d like to test subsets of variants
for associations with traits
— But there are a huge number of subsets!
— Multiple testing correction will likely result in
zero association calls
* Area of research
— Only test carefully selected subsets
— Bayesian version: put prior on subsets



The era of "BIG Data”



