Technology and methodology for inferring genetic variation and discovering associations with phenotypes

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Colin Dewey

cdewey@biostat.wisc.edu

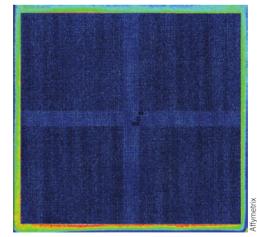
Spring 2012

Outline

- Variation detection
 - Array technologies
 - Whole-genome sequencing
- The basics of GWAS
 - Testing SNPs for association
 - Correcting for multiple-testing

Variation detecting technologies

- Array-based technologies
 - Relies on hybridization of sample DNA to pre-specified "probes"
 - Each probe is chosen to measure a single possible variant: SNP, CNV, etc.
- Sequencing-based technologies
 - Whole-genome shotgun sequence, usually at low coverage (e.g., 4-8x)
 - Align reads to "reference" genome: mismatches, indels, etc. indicate variations



Affymetrix SNP chip

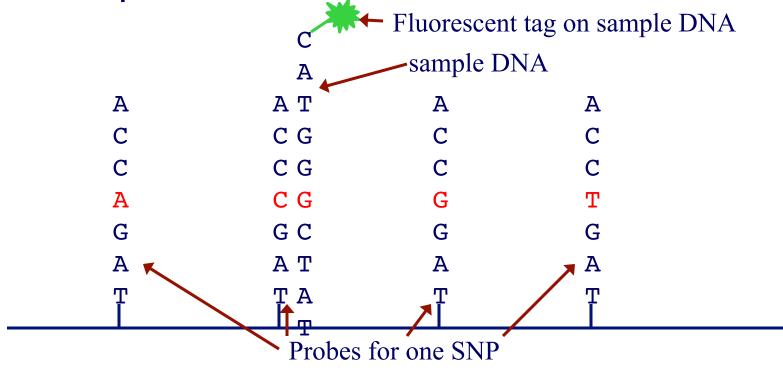
Illumina HiSeq sequencer

Array-based technologies

- Currently two major players
- Affymetrix Genome-Wide Human SNP Arrays
 - Used for HapMap project,
 Navigenics service
- Illumina BeadChips
 - Used by 23andMe, deCODEme services

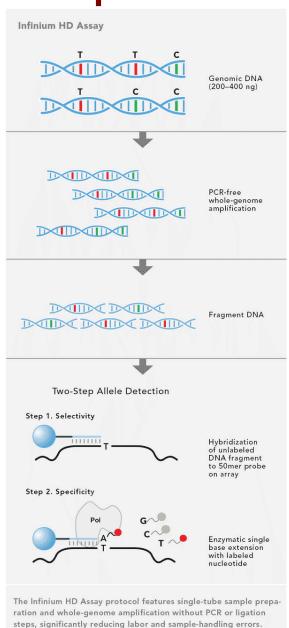
Affymetrix SNP arrays

- Probes for ~900K SNPs
- Another ~900K probes for CNV analysis
- Differential hybridization one probe for each possible SNP allele



Illumina BeadChips

- OmniExpress+
 - -~900K SNPs (700K fixed, 200 custom)
- Array with probes immediately adjacent to variant location
- One base extension (like sequencing) to determine base at variant location



GWAS data

Individual	Genotype at Position 1	Genotype at Position 2	Genotype at Position 3	•••	Genotype at Position M	Disease?
1	CC	AG	GG		AA	N
2	AC	AA	TG		AA	Y
3	AA	AA	GG		AT	Y
N	AC	AA	TT		AT	N

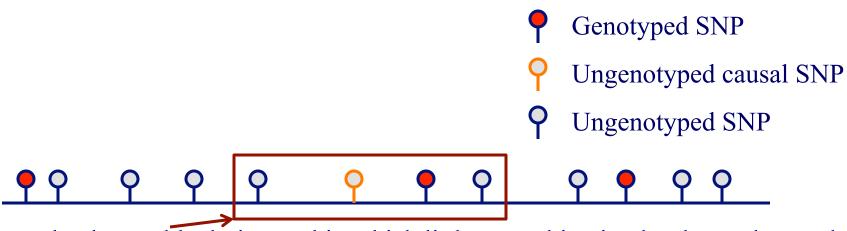
- N individuals genotyped at M positions
- Disease status (or other phenotype) is measured for each individual

GWAS task

- Given: genotypes and phenotypes of individuals in a population
- Do: Identify which genomic positions are associated with a given phenotype

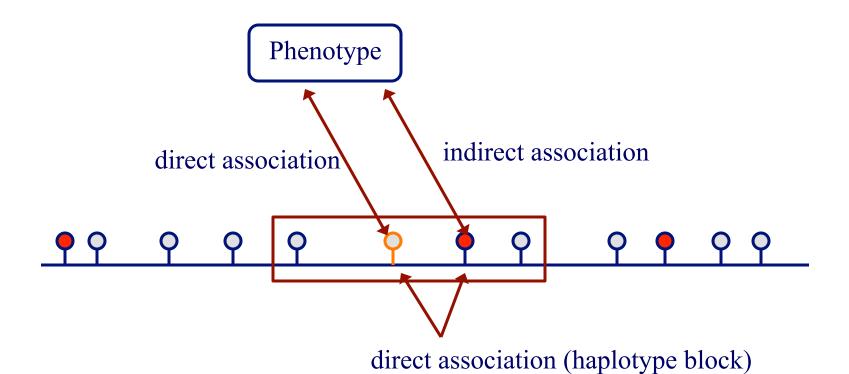
Can we identify causal SNPs?

- Typically only genotype at 1 million sites
- Humans vary at more than 10 million sites
- Unlikely that an associated SNP is causal
- "Tag SNPs": however, associated SNPs "tag" blocks of the genome that contain the causal variant



haplotype block: interval in which little recombination has been observed

Direct and indirect associations



Basics of association testing

- Test each site individually for association with a statistical test
 - each site is assigned a p-value for the null hypothesis that the site is **not** associated with the phenotype
- Correct for the fact that we are testing multiple hypotheses

Basic genotype test

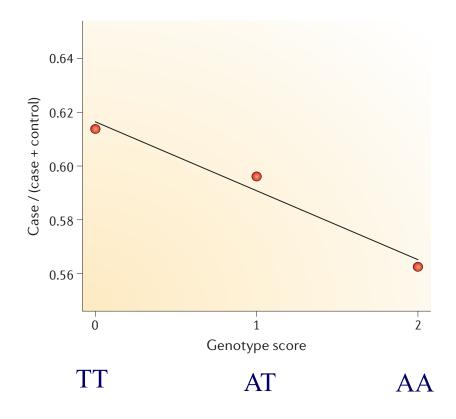
- Assuming binary phenotype (e.g., disease/no disease)
- Test for significant association with Pearson's Chisquare test or Fisher's Exact Test

		genotype			
		AA	AT	TT	
ala ou otrza o	Disease	40	30	30	
phenotype -	No disease	70	20	10	

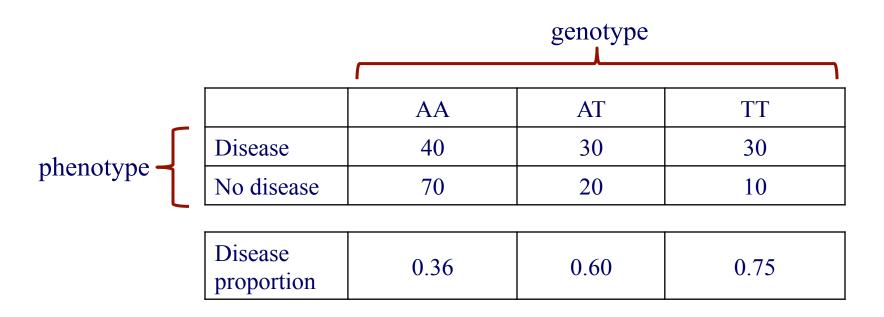
Chi-square test p-value = 4.1e-5 (2 degrees of freedom) Fisher's exact test p-value = 3.4e-5

Armitage (trend) test

 Can gain more statistical power if we can assume that probability of trait is linear in the number of one of the alleles



Trend test example



Trend in Proportions test p-value = 8.1e-6

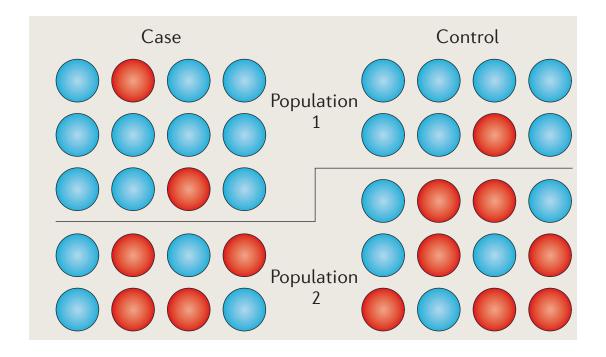
(note that this is a smaller p-value than from the basic genotype test)

GWAS Challenges

- Population structure
- Multiple testing
- Interacting variants

Population structure issues

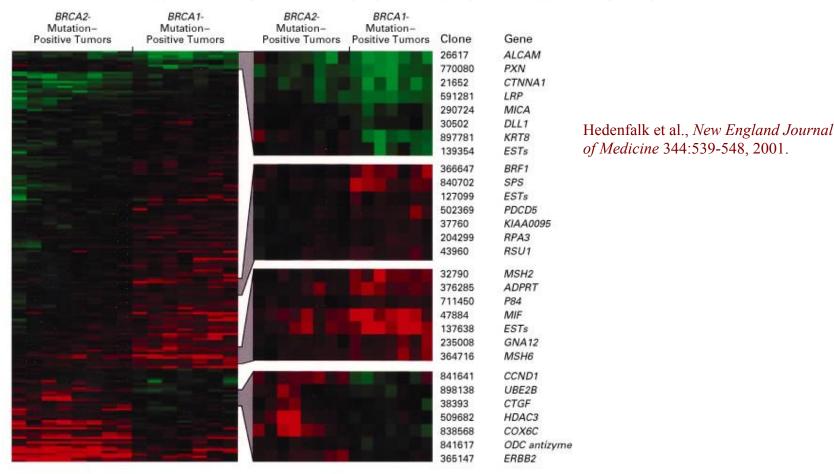
 If certain populations disproportionally represent cases or controls, then spurious associations may be identified



Multiple testing

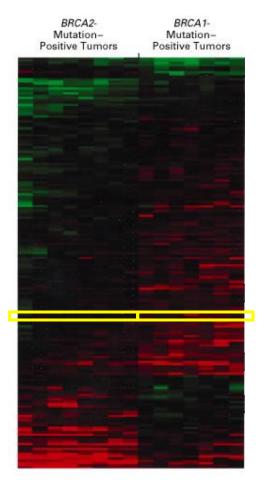
- In the genome-age, we have the ability to perform large numbers of statistical tests simultaneously
 - SNP associations (~1 million)
 - Gene differential expression tests (~ 50 thousand)
- Do traditional p-value thresholds apply in these cases?

Expression in BRCA1 and BRCA2 Mutation-Positive Tumors



- 7 patients with BRCA1 mutation-positive tumors vs. 7 patients with BRCA2 mutation-positive tumors
- 5631 genes assayed

Expression in BRCA1 and BRCA2 Mutation-Positive Tumors



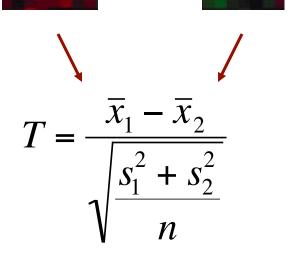
- Key question: which genes are differentially expressed in these two sets of tumors?
- Methodology: for each gene, use a statistical test to assess the hypothesis that the expression levels differ in the two sets

Hypothesis Testing

- consider two competing hypotheses for a given gene:
 - null hypothesis: the expression levels in the first set come from the same distribution as the levels in the second set
 - alternative hypothesis: they come from different distributions
- we first calculate a test statistic for these measurements, and then determine its *p-value*
- *p-value*: the probability of observing a test statistic that is as extreme or more extreme than the one we have, assuming the null hypothesis is true

Calculating a *p*-value

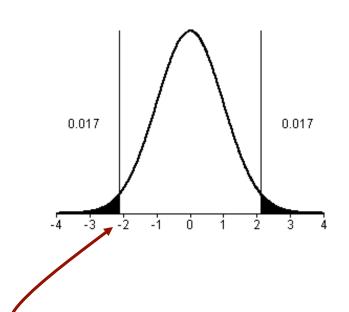
1. calculate test statistic (e.g. T statistic)



where
$$\bar{x}_{j} = \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} x_{ij}$$

$$s_{j}^{2} = \frac{1}{n_{i} - 1} \sum_{i=1}^{n_{j}} (x_{ij} - \bar{x}_{j})^{2}$$

2. see how much mass in null distribution with value this extreme or more



if test statistic is here, p = 0.034

The Multiple Testing Problem

- if we're testing one gene, the *p*-value is a useful measure of whether the variation of the gene's expression across two groups is significant
- suppose that most genes are <u>not</u> differentially expressed (this is the typical situation)
- if we're testing 5000 genes that <u>don't</u> have a significant change in their expression (i.e. the null hypothesis holds), we'd still expect about 250 of them to have p-values ≤ 0.05
- Can think of *p*-value as the *false positive rate* over null genes

Family-wise error rate

- One way to deal with the multiple testing problem is to control the probability of rejecting at least one null hypothesis when all genes are null
- This is the *family-wise error rate* (FWER)
- Suppose you tested 5000 genes and predicted that all genes with p-values ≤ 0.05 were differentially expressed

$$FWER = 1 - (1 - 0.05)^{5000} \approx 1$$

– you are guaranteed to be wrong at least once!

Bonferroni correction

- Simplest approach
- Choose a p-value threshold β such that the FWER is $\leq \alpha$

$$\alpha = 1 - (1 - \beta)^g$$

where g is the number of genes (tests)

for
$$\beta g \ll 1$$
, $\beta \approx \frac{\alpha}{g}$

• For g=5000 and α =0.05 we set a *p*-value threshold of 1e-5

Loss of power with FWER

- FWER, and Bonferroni in particular, reduce our power to reject null hypotheses
 - As g gets large, p-value threshold gets very small
- For expression analysis, FWER and false positive rate are not really the primary concern
 - We can live with false positives
 - We just don't want too many of them relative to the total number of genes called significant

The False Discovery Rate

[Benjamini & Hochberg '95; Storey & Tibshirani '02]

gene	<i>p</i> -value	rank	
C F G J	0.0001 0.001 0.016 0.019	1 2 3 4	suppose we pick a threshold, and call genes above this threshold "significant"
I B	0.030 0.052	<u>5</u> 6	
A	0.10		the false discovery rate is the expected fraction of these that are mistakenly
D H	0.35 0.51	8 9	fraction of these that are mistakenly called significant (i.e. are truly null)
E	0.70	10	

The False Discovery Rate

			$F(t) = \#\{\text{null } p_i \le t; \ i = 1m\}$
gene	<i>p</i> -value	rank	
C	0.0001	1	# genes
F	0.001	2	$S(t) = \# \{ p_i \le t; \ i = 1m \}$
G	0.016	3	$D(t) - n \left\{ p_i \leq t, \ t - 1 \dots n t \right\}$
J	0.019	4	
I	0.030	5 <i>t</i>	
В	0.052	6	
A	0.10	7	$FDR(t) = E \left \frac{F(t)}{S(t)} \right \approx \frac{E[F(t)]}{E[S(t)]}$
D	0.35	8	$FDR(t) = E\left \frac{1}{C(t)}\right \approx \frac{1}{E\left[C(t)\right]}$
Н	0.51	9	[S(i)] $E[S(i)]$
E	0.70	10	

The False Discovery Rate

• to compute the FDR for a threshold t, we need to estimate E[F(t)] and E[S(t)]

$$FDR(t) = E\left[\frac{F(t)}{S(t)}\right] \approx \frac{E[F(t)]}{E[S(t)]}$$
 estimate by the observed $S(t)$

$$S(t) = \# \{ p_i \le t; i = 1...m \}$$

 $F(t) = \# \{ \text{null } p_i \le t; i = 1...m \}$

• so how can we estimate E[F(t)]?

Benjamini-Hochberg

- Suppose the fraction of genes that are truly null is very close to 1
- Then

$$E[F(t)] = E[\#\{\text{null } p_i \le t; \ i = 1...m\}] \approx mt$$

- because p-values are uniformly distributed over [0,1] under the null model
- Suppose we choose a threshold t and observe that S(t) = k

$$FDR(t) \approx \frac{E[F(t)]}{S(t)} = \frac{mt}{k}$$

Benjamini-Hochberg procedure

- Suppose we want the FDR ≤ α
- Sort the p-values of your genes so that they are in increasing order

$$P_{(1)} \leq P_{(2)} \dots \leq P_{(m)}$$

Select the largest k such that

$$P_{(k)} \leq \frac{k}{m} \alpha$$

What Fraction of the Genes are Truly Null?

• consider the histogram of *p*-values from Hedenfalk et al.



8.0

– but we expect null *p*-values to be uniformly distributed

1.0

estimated proportion of null p-values

$$\hat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda; i = 1...m\}}{m(1-\lambda)}$$

Figure from Storey & Tibshirani PNAS 100(16), 2002.

0.4

0.6

0.2

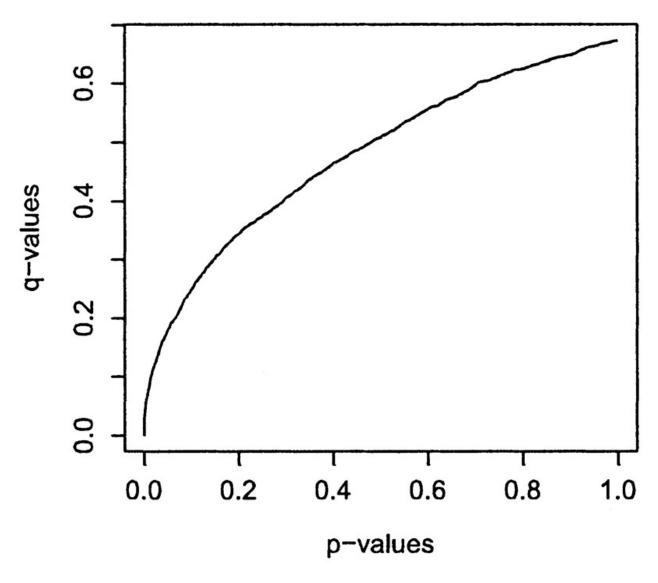
0.0

7

Storey & Tibshirani approach

gene	<i>p</i> -value	rank	<i>q</i> -value	
C F G J	0.0001 0.001 0.016 0.019 0.030	1 2 3 4 5	0.001 0.005 0.053 0.0475 0.060	$\hat{q}(p_i) = \min_{t \ge p_i} FDR(t)$ \int pick minimum FDR for
В	0.052	6	0.08	all greater thresholds
A	0.10	7	0.14	_
D	0.35	8	0.44	
H	0.51	9	0.57	
E	0.70	10	0.70	

q-values vs. p-values for Hedenfalk et al.



FDR Summary

- in many high-throughput experiments, we want to know what is different across a two sets of conditions/individuals (e.g. which genes are differentially expressed)
- because of the multiple testing problem, p-values may not be so informative in such cases
- the FDR, however, tells us which fraction of significant features are likely to be null
- *q*-values based on the FDR can be readily computed from *p*-values (see Storey's package QVALUE)

Back to GWAS: Interacting variants

- Most traits are complex: not the result of a single gene or genomic position
- Ideally, we'd like to test subsets of variants for associations with traits
 - But there are a huge number of subsets!
 - Multiple testing correction will likely result in zero association calls
- Area of research
 - Only test carefully selected subsets
 - Bayesian version: put prior on subsets

The era of "BIG Data"