Interpolated Markov Models for Gene Finding

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2015

Colin Dewey

cdewey@biostat.wisc.edu

Goals for Lecture

the key concepts to understand are the following

- the gene-finding task
- the trade-off between potential predictive value and parameter uncertainty in choosing the order of a Markov model
- interpolated Markov models
- back-off models

The Gene Finding Task

Given: an uncharacterized DNA sequence

Do: locate the genes in the sequence, including the coordinates of individual *exons* and *introns*

Sources of Evidence for Gene Finding

- signals: the sequence signals (e.g. splice junctions) involved in gene expression
- content: statistical properties that distinguish proteincoding DNA from non-coding DNA
- conservation: signal and content properties that are conserved across related sequences (e.g. orthologous regions of the mouse and human genome)

Gene Finding: Search by Content

- encoding a protein affects the statistical properties of a DNA sequence
 - some amino acids are used more frequently than others (Leu more popular than Trp)
 - different numbers of codons for different amino acids (Leu has 6, Trp has 1)
 - for a given amino acid, usually one codon is used more frequently than others
 - this is termed codon preference
 - these preferences vary by species

Codon Preference in E. Coli

AA	codon	/1000	
Gly	GGG	1.89	
Gly	GGA	0.44	
Gly	GGU	52.99	
Gly	GGC	34.55	
Glu	GAG	15.68	
Glu	GAA	57.20	
_		0.1	
Asp	GAU	21.63	
Asp	GAC	43.26	

Reading Frames

 a given sequence may encode a protein in any of the six reading frames

Open Reading Frames (ORFs)

- an ORF is a sequence that
 - starts with a potential start codon
 - ends with a potential stop codon, in the same reading frame
 - doesn't contain another stop codon in-frame
 - and is sufficiently long (say > 100 bases)

 an ORF meets the minimal requirements to be a protein-coding gene in an organism without introns

Markov Models & Reading Frames

- consider modeling a given coding sequence
- for each "word" we evaluate, we'll want to consider its position with respect to the reading frame we're assuming

· can do this using an inhomogeneous model

A Fifth Order Inhomogeneous Markov Chain

Selecting the Order of a Markov Chain Model

- higher order models remember more "history"
- additional history can have predictive value
- example:
 - predict the next word in this sentence fragment "...you__" (are, give, idiot, say, see, too, ...?)
 - now predict it given more history

```
"...can you___"
```

"...say can you___"

"...oh say can you___"

Selecting the Order of a Markov Chain Model

- but the number of parameters we need to estimate grows exponentially with the order
 - for modeling DNA we need $O(4^{n+1})$ parameters for an nth order model
- the higher the order, the less reliable we can expect our parameter estimates to be
- suppose we have 100k bases of sequence to estimate parameters of a model
 - for a 2nd order homogeneous Markov chain, we'd see each history 6250 times on average
 - for an 8th order chain, we'd see each history ~ 1.5 times on average

Interpolated Markov Models

- the IMM idea: manage this trade-off by interpolating among models of various orders
- *simple* linear interpolation:

$$P_{\text{IMM}}(x_i \mid x_{i-n}, ..., x_{i-1}) = \lambda_0 P(x_i) + \lambda_1 P(x_i \mid x_{i-1})$$

• • •

$$+ \lambda_n P(x_i | x_{i-n}, ..., x_{i-1})$$

• where $\sum_{i} \lambda_{i} = 1$

Interpolated Markov Models

- we can make the weights depend on the history
 - for a given order, we may have significantly more data to estimate some words than others
- general linear interpolation

$$P_{\mathrm{IMM}}(x_i \mid x_{i-n},...,x_{i-1}) = \lambda_0 P(x_i)$$

$$+ \lambda_1(x_{i-1}) P(x_i \mid x_{i-1})$$

$$...$$

$$\lambda \text{ is a function of the given history}$$

$$+ \lambda_n(x_{i-n},...,x_{i-1}) P(x_i \mid x_{i-n},...,x_{i-1})$$

The GLIMMER System

[Salzberg et al., Nucleic Acids Research, 1998]

- system for identifying genes in bacterial genomes
- uses 8th order, inhomogeneous, interpolated Markov chain models

IMMs in GLIMMER

- how does GLIMMER determine the λ values?
- first, let's express the IMM probability calculation recursively

$$\begin{split} P_{\text{IMM,n}}(x_i \mid x_{i-n}, ..., x_{i-1}) &= \\ \lambda_{\text{n}}(x_{i-n}, ..., x_{i-1}) P(x_i \mid x_{i-n}, ..., x_{i-1}) &+ \\ & [1 - \lambda_n(x_{i-n}, ..., x_{i-1})] P_{\text{IMM,n-1}}(x_i \mid x_{i-n+1}, ..., x_{i-1}) \end{split}$$

• let $c(x_{i-n},...,x_{i-1})$ be the number of times we see the history $x_{i-n},...,x_{i-1}$ in our training set

$$\lambda_n(x_{i-n},...,x_{i-1}) = 1$$
 if $c(x_{i-n},...,x_{i-1}) > 400$

IMMs in GLIMMER

• if we haven't seen $X_{i-n},...,X_{i-1}$ more than 400 times, then compare the counts for the following:

<i>n</i> th order history + base	(n-1)th order history + base		
$X_{i-n},,X_{i-1},a$	$X_{i-n+1},,X_{i-1},a$		
X_{i-n},\ldots,X_{i-1},C	$\mathcal{X}_{i-n+1}, \dots, \mathcal{X}_{i-1}, \mathcal{C}$		
$x_{i-n},,x_{i-1},g$	$x_{i-n+1}, \dots, x_{i-1}, g$		
$X_{i-n},,X_{i-1},t$	$x_{i-n+1}, \dots, x_{i-1}, t$		

• use a statistical test (χ^2) to get a value d indicating our confidence that the distributions represented by the two sets of counts are different

IMMs in GLIMMER

putting it all together

$$\lambda_{n}(x_{i-n},...,x_{i-1}) = \begin{cases} 1 & \text{if } c(x_{i-n},...,x_{i-1}) > 400 \\ d \times \frac{c(x_{i-n},...,x_{i-1})}{400} & \text{else if } d \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

where $d \in (0,1)$

IMM Example

suppose we have the following counts from our training set

IMM Example (Continued)

• now suppose we want to calculate $P_{\text{IMM,3}}(T \mid ACG)$

$$P_{\mathsf{IMM},1}(T \mid G) = \lambda_1(G)P(T \mid G) + (1 - \lambda_1(G))P_{\mathsf{IMM},0}(T)$$
$$= P(T \mid G)$$

$$\begin{split} P_{\mathsf{IMM},2}(T \mid CG) &= \lambda_2(CG)P(T \mid CG) + \left(1 - \lambda_2(CG)\right)P_{\mathsf{IMM},1}(T \mid G) \\ &= P(T \mid G) \end{split}$$

$$\begin{split} P_{\text{IMM},3}(T \mid ACG) &= \lambda_3 (ACG) P(T \mid ACG) + \left(1 - \lambda_3 (ACG)\right) P_{\text{IMM},2}(T \mid CG) \\ &= 0.214 \times P(T \mid ACG) + (1 - 0.214) \times P(T \mid G) \end{split}$$

Gene Recognition in GLIMMER

- essentially ORF classification
- for each ORF
 - calculate the prob of the ORF sequence in each of the 6 possible reading frames
 - if the highest scoring frame corresponds to the reading frame of the ORF, mark the ORF as a gene
- for overlapping ORFs that look like genes
 - score overlapping region separately
 - predict only one of the ORFs as a gene

GLIMMER Experiment

- 8th order IMM vs. 5th order Markov model
- trained on 1168 genes (ORFs really)
- tested on 1717 annotated (more or less known) genes

GLIMMER Results

	TP	FN	FP & TP?
Model	Genes found	Genes missed	Additional
GLIMMER IMM	1680 (97.8%	37	209
5th-Order Markov	1574 (91.7%)	143	104

The first column indicates how many of the 1717 annotated genes in *H.influenzae* were found by each algorithm. The 'additional genes' column shows how many extra genes, not included in the 1717 annotated entries, were called genes by each method.

- GLIMMER has greater sensitivity than the baseline
- it's not clear if its precision/specificity is better

An Alternative Approach: Back-off Models

devised for language modeling
 [Katz, IEEE Transactions on Acoustics, Speech and Signal Processing, 1987]

$$P_{BACK}(x_i \mid x_{i-n},...,x_{i-1}) = \begin{cases} (1-\delta)\frac{c(x_{i-n},...,x_i)}{c(x_{i-n},...,x_{i-1})}, & \text{if } c(x_{i-n},...,x_i) > k \\ \\ \lambda P_{BACK}(x_i \mid x_{i-n+1},...,x_{i-1}), & \text{otherwise} \end{cases}$$

- use nth order probability if we've seen this sequence (history + current character) k times
- otherwise back off to lower-order

An Alternative Approach: Back-off Models

$$P_{BACK}(x_i \mid x_{i-n},...,x_{i-1}) = \begin{cases} (1-\delta)\frac{c(x_{i-n},...,x_i)}{c(x_{i-n},...,x_{i-1})}, & \text{if } c(x_{i-n},...,x_i) > k \\ \\ \lambda P_{BACK}(x_i \mid x_{i-n+1},...,x_{i-1}), & \text{otherwise} \end{cases}$$

- why do we need δ and λ ?
- δ : save some probability mass for sequences we haven't seen
- λ : distribute this saved mass to lower-order sequences (different λ for each history; really $\lambda(x_{i-n+1},...,x_{i-1})$)
- this is important for natural language, where there are many words that could follow a particular history

Simple Back-off Example

$$P_{BACK}(x_i \mid x_{i-n},...,x_{i-1}) = \begin{cases} (1-\delta)\frac{c(x_{i-n},...,x_i)}{c(x_{i-n},...,x_{i-1})}, & \text{if } c(x_{i-n},...,x_i) > k\\ \lambda P_{BACK}(x_i \mid x_{i-n+1},...,x_{i-1}), & \text{otherwise} \end{cases}$$

- given training sequence: TAACGACACG
- suppose $\delta = 0.2$ and k = 0

$$P_{BACK}(A) = \frac{4}{10} \qquad P_{BACK}(A \mid A) = (1 - \delta) \frac{1}{4} = 0.2$$

$$P_{BACK}(C) = \frac{3}{10} \qquad P_{BACK}(C \mid A) = (1 - \delta) \frac{3}{4} = 0.6$$

$$P_{BACK}(G) = \frac{2}{10} \qquad P_{BACK}(G \mid A) = \left[\frac{\delta}{P_{BACK}(G) + P_{BACK}(T)} \right] \times P_{BACK}(G) = \frac{0.2}{0.3} \times 0.2$$

$$P_{BACK}(T) = \frac{1}{10} \qquad P_{BACK}(T \mid A) = \left[\frac{\delta}{P_{BACK}(G) + P_{BACK}(T)} \right] \times P_{BACK}(T) = \frac{0.2}{0.3} \times 0.1$$