Alignment of Long Sequences

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2015
Colin Dewey
cdewey@biostat.wisc.edu



Goals for Lecture

the key concepts to understand are the following

how large-scale alignment differs from the simple case

the canonical three step approach of large-scale aligners
using suffix trees to find MUMSs (alignment seeds)

using tries and threaded tries to find alignment seeds

constrained dynamic programming to align between/
around anchors

using sparse DP to find a chain of local alignments



Pairwise Large-Scale Alignment:
Task Definition

Given
— a pair of large-scale sequences (e.g. chromosomes)

— a method for scoring the alignment (e.g. substitution
matrices, insertion/deletion parameters)

Do

— construct global alignment: identify all matching
positions between the two sequences



Large Scale Alignment Example:
Mouse Chr6 vs. Human Chr12

250000

200000

150000

Position in AC002397, mouse chromosome 6

o ° 30 o0
100000 © ooo o 1
[+
L]
<o
08
< © L+]
50000 o 0% %, .
o]
<o
coo& o
o
0 & f’boo O
150000 200000 250000

Position in U47924, human chromosome 12




Why the Problem is Challenging

« sequences too big to make O(n?) dynamic-
programming methods practical

* long sequences are less likely to be colinear because
of rearrangements

— initially we’ll assume colinearity
— we’ll consider rearrangements in next lecture



perform pattern
matching to find
seeds for global
alignment

General Strategy

Figure from: Brudno et al. Genome Research, 2003

N\ N .
‘K K i
.1\%
N\, Ny
N o e N
\\ \“-..

2.

find a good chain of
anchors

3.

fill in remainder
with standard but
constrained
alignment method



Comparison of Large-Scale
Alignment Methods

Method Pattern matching Chaining

MUMmer suffix tree - MUMSs LIS variant

suffix tree - exact & | Smith-Waterman
wobble matches variant

k-mer trie, inexact

matches sparse DP




The MUMmer System

Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B

1. find all maximal, unique, matching subsequences
(MUMSs)

2. extract the longest possible set of matches that
occur in the same order in both genomes

3. close the gaps



Step 1: Finding Seeds in MUMmer

* maximal unique match (MUM):
— occurs exactly once in both genomes A and B
— not contained in any longer MUM

Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta
Genome B:  gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag

mismatches

 key insight: a significantly long MUM is certain to be
part of the global alignment



Suffix Trees

e substring problem:
— given text S of length m
— preprocess S in O(m) time
— such that, given query string Q of length », find
occurrence (if any) of O in §in O(n) time

» suffix trees solve this problem, and others



key property

Suffix Tree Definition

« asuffix tree T for a string S of length m is a tree with
the following properties:

rooted and directed
m leaves, labeled 1 to m
each edge labeled by a substring of §

concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by S;._»)

each internal non-root node has at least two
children

edges out of a node must begin with different
characters



Suffixes

S = ‘panana%”
suffixes of S

$

ad

nad
anad
nana$
anana$b
banana$



Suffix Tree Example

S = panana%”

add ‘$’ to end so that suffix A
tree exists (no suffix is a
prefix of another suffix)




Solving the Substring Problem

e assume we have suffix tree T
* FindMatch(Q, T):

— follow (unique) path down from root of T
according to characters in O

— if all of O is found to be a prefix of such a path
return label of some leaf below this path
— else, return no match found



Solving the Substring Problem

Q = nan QO = anab

}"/’
n . n
n$§n: ﬁn
$$ a a a a
$ +5y 0% L $) 8
© o © © © o o O
2 4 6 1 3 5 2 4 ¢ 35

return 3 return no match found



MUMs and Generalized Suffix Trees

 build one suffix tree for both genomes A and B
 |abel each leaf node with genome it represents

Genome A: ccacg# each internal node represents
a repeated sequence
Genome B: cct$ "
acgit ot t$
A3 L) A,S B,3
acg# c off t$
A2 ‘ A, 4 B, 2
acg# t$
Al B, 1 each leaf represents a suffix

and its position in sequence



MUMs and Suffix Trees

* uniqgue match: internal node with 2 children, leaf

nodes from different genomes
* but these matches are not necessarily maximal

Genome A: ccacg#

Genome B: cct$

B,3

represents unique match



MUMs and Suffix Trees

 to identify maximal matches, can compare suffixes
following unique match nodes

Genome A: acat#
Genome B: acaa$

B, 2

the suffixes following
these two match nodes
A, 1l B, 1 are the same; the left one
—_— represents a longer match
(aca)




Using Suffix Trees to Find MUMs

 Of(n) time to construct suffix tree for both sequences
(of lengths < n)

e O(n)time to find MUMSs - one scan of the tree (which
is O(n) in size)

e O(n) possible MUMs in contrast to O(n?) possible
exact matches

e main parameter of approach: length of shortest MUM
that should be identified (20 — 50 bases)



Step 2: Chaining in MUMmer

« sort MUMSs according to position in genome A

 solve variation of Longest Increasing Subsequence
(LIS) problem to find sequences in ascending order in
both genomes

Genome B: 3 y 6 - :

Genome A: 1

2 4 7
\ /7
Genome B: 1 \2 4/ 6 -

Figure from: Delcher et al., Nucleic Acids Research 27, 1999




Finding Longest Subsequence

 unlike ordinary LIS problems, MUMmer takes into
account

— lengths of sequences represented by MUMs
— overlaps
 requires O(klogk) time where k is number of MUMs



Types of Gaps in a MUMmer
Alignment

. SNP: exactly one base (indicated by =) differs between the two sequences. It is
surrounded by exact-match sequence.

Genome A:  cgtcatgggegttegtegttg
Genome B: cgtcatgggcattcgtegttg

. Insertion: a sequence that occurs in one genome but not the other.

Genome A:  cggggtaaccge. ... cctggteggg
Genome B: cggggtaaccgegttgetcggggtaaccgeectggteggg

e e R e e E e e e R I

3. Highly polymorphic region: many mutations in a short region.

Genome A: ccgectegeetgg.getggegeccgetc
Genome B: ccgcctegecagttgaccgegeecgetce

-~ -~ -~ -~~~

. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of
the repeat in Genome B is imperfect, containing one mismatch to the other three
identical copies.

Genome A: c¢TGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc
Genome B: aTGGGTGGGGCgACGTggegeegegTGGGTGGGACAACGTa

Figure from: Delcher et al., Nucleic Acids Research 27, 1999



Step 3: Close the Gaps

« SNPs:
— between MUMSs: trivial to detect
— otherwise: handle like repeats

* Inserts

— transpositions (subsequences that were deleted
from one location and inserted elsewhere): look for
out-of-sequence MUMSs

— simple insertions: trivial to detect



Step 3: Close the Gaps

* polymorphic regions
— short ones: align them with dynamic programming
method

— long ones: call MUMmer recursively w/ reduced
min MUM length

* repeats
— detected by overlapping MUMs

Genome A: |uniqueAAGGAAGGAAGGsequence
Genome 3: [unique/AAGGAAGG] . . .sequence
| | |
Position: 0 10 20

Figure from: Delcher et al. Nucleic Acids Research 27, 1999



The LAGAN Method

Brudno et al., Genome Research, 2003

Given: genomes A and B
anchors = find_anchors(A, B)
step 3: finish global alignment with DP constrained by anchors

find_anchors(A, B)
step 1: find local alignments by matching, chaining k-mer seeds
step 2: anchors = highest-weight sequence of local alignments
for each pair of adjacent anchors a,, a, in anchors
if a,, a, are more than d bases apart
A’, B’ = sequences between a,, a,
sub-anchors = find_anchors( A’, B’)
insert sub-anchors between a,, a, in anchors
return anchors



Step 1a: Finding Seeds in LAGAN

degenerate k-mers: matching k-long sequences with
a small number of mismatches allowed

by default, LAGAN uses 10-mers and allows 1
mismatch

cacg|cgecgctacat|acct
acta|cgcggtacatcgta




Finding Seeds in LAGAN

« example: a trie to represent all 3-mers of the sequence
gaaccgacct

2 3,7 ol 8 5 1 6

e oOne sequence is used to build the trie

 the other sequence (the query) is “walked” through to
find matching k-mers



Allowing Degenerate Matches

« suppose we're allowing 1 base to mismatch in looking

for matches to the 3-mer acc; need to explore green

nodes ‘




LAGAN Uses Threaded Tries

* in a threaded trie, each leaf for word W,...W,, has a back

pointer to the node for W,...w,




Traversing a Threaded Trie

« consider traversing the trie to find 3-mer matches for the
query sequence: accgt ‘

a C g

a

(O @
C C g a
( 9 (>
c C ‘ t a C
4 1 s 5 | —1 1

2 3.7 —1 6

I

 usually requires following only two pointers to match against
the next k-mer, instead of traversing tree from root for each



Step 1b: Chaining Seeds in LAGAN

Istance
cuto cutoff soed
query
SSE VA

can chain seeds s, and s, if

— the indices of s, > indices
of s, (for both sequences)

— S, and s, are near each

’ ’
T T L L LTy (e SRR
Pl
SRS S

sequence is processed

other -
keep track of seeds in the
“search box™ as the query W

database

v / /v
Search location Range of
Figure from: Brudno et al. BMC Bioinformatics, 2003  DOX in query search



Step 2: Chaining in LAGAN

« use sparse dynamic programming to chain local

alignments




The Problem: Find a Chain of Local Alignments

N

N\

AN

N\

N

Slide from Serafim Batzoglou, Stanford University |

(X,y) = (X.y’)
requires
X <X
y<y
Each local alignment has a

weight

FIND the chain with highest
total weight



Sparse DP for rectangle chaining 15
e 1,...,N: rectangles h
« (h, L): y-coordinates of rectangle j
. w(): weight of rectangle | |
- V(j): optimal score of chain ending in | )
. L: list of triplets (I, V), j) y

L is sorted by I:: smallest (North) to largest (South) value
L is implemented as a balanced binary tree

Slide from Serafim Batzoglou, Stanford University



Sparse DP for rectangle chaining e

Main idea:

*  Sweep through x-
coordinates

* To the right of b, anythin
chainable to a is chainable

tob

« Therefore, if V(b) > V(a),
rectangle a is “useless” for
subsequent chaining

* InL, keep rectangles |
sorted with increasing |-
coordinates =

sorted with increasing V(j)
score

=
) )
N

Slide from Serafim Batzoglou, Stanford University



Sparse DP for rectangle chaining

Go through rectangle x-coordinates, from lowest to highest:

1. When on the leftmost end of rectangle i: j

J: rectangle in L, with largest |, < h,

V(i) = wi) + V() K

2. When on the rightmost end of i:

K: rectangle in L, with largest |, <1,
If V(i) > V(K):
INSERT (I, V(i), i) inL
REMOVE all (I, V(j), j) with V(j) = V(i) & |, = |;

Slide from Serafim Batzoglou, Stanford University




4
e

|
as I
1

::c:3

L5 19 |15]16
Lfvals (111213

L]
L]

]
0l

SIS 16 D D e I
N

e b s Al o s nletated

——— —— ———— — —

=
— o — ——h—————

1. When on the leftmost end of rectangle i:
J: rectangle in L, with largest I; <h;
V(i) =w() + V()

2. When on the rightmost end of i:
k: rectangle in L, with largest I, < 1;
If V(@) > V(k):
INSERT (1, V(i),i) in L
REMOVE all (I, V(j), j) with V(§) = V(i) & 1, = |;

Slide from Serafim Batzoglou, Stanford University




Time Analysis

1. Sorting the x-coords takes O(N log N)
2. Going through x-coords: N steps

3. Each of N steps requires O(log N) time:

Searching L takes log N

Inserting to L takes log N

All deletions are consecutive, so log N per deletion

Each element is deleted at most once: N log N for all deletions

Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in
a balanced binary search tree

Slide from Serafim Batzoglou, Stanford University



Constrained Dynamic
Programming

if we know that the "
element in one sequence
must align with the /i
element in the other, we
can ignore two rectangles
In the DP matrix

l

A A

B
...
...
2.
R
g

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

e

0
e
e ]
i
e
it

e
]
I

]
]
]
]
]
]
]
]
I

?fszfé’ffszfﬁ?fszézszé’«:’é

s,




e given an anchor that /7777

 thus anchors are

Step 3: Computing the Global
Alignment in LAGAN

1-T 1 1tr

,,,,,,,,,,,

starts at (7, /) and ends 0
at(i7./'), LAGAN limits 7
the DP to the .
unshaded regions i G

somewhat flexible

,,,,,,,,,,,,,

1’-r 1> 1’+r1

Figure from: Brudno et al. Genome Research, 2003



Computing the Global

Step 3

1+r

1-T 1

tin LAGAN

Alignmen

,///./ SO

NS

N

N\
AN

7

7
f,;

"(l/

//

NN
NN
N\

N
NI

MR RN
it

N i,/MMM/M/N///N// \

NN\ /”,

DR

NN NN
R

/K

AR

\ .,,////,, .NM
/,mz A

WO . N\
SRR NN

Brudno et al. Genome Research, 2003

Figures from



Example Alignment:
E. ColiO157:H7 vs. E. coli K-12
\

£ é

Figure from: Perna et al. Nature, 2001



