Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2015
Colin Dewey
cdewey@biostat.wisc.edu
Overview

• Part I - Alternative splicing and the challenges it poses

• Part II - A solution: *Probabilistic Splice Graphs (PSGs)*

• Part III - Evaluating PSG methodology
Alternative splicing

pre-mRNA

splicing

alternatively spliced mRNAs

translation

protein isoforms
Classes of alternative splicing events

- Exon skipping
- Mutually exclusive exons
- Alternative 5' donor sites
- Alternative 3' acceptor sites
- Intron retention
Complication 1: De novo transcriptome assembly

- RNA-Seq reads/fragments are relatively short
- Often insufficient to reconstruct full-length isoforms in the presence of alternative splicing
- Transcriptome assemblies perhaps best left in “graph” form
 - De Bruijn graph

Graph constructed by the “Butterfly” module of Trinity (Grabherr et al. 2011)
Complication 2: Non-identifiability of full-length isoform models

Lacroix et al. 2008; Hiller et al. 2009
Complication 3: Combinatorial explosion of distinct isoforms

- Combinatorial explosion of the number of possible isoforms for each gene
- Insufficient data to accurately estimate abundances of thousands of isoforms

Drosophila *Dscam*: more than 38,000 possible isoforms
(Schmucker et al., 2000)
Overview

- Part I - Alternative splicing and the challenges it poses
- Part II - A solution: *Probabilistic Splice Graphs (PSGs)*
- Part III - Evaluating PSG methodology
Splice Graphs

- Heber et al. 2002

- Compact **data structure** for representing the possible isoforms of a gene
Splice Graphs with EST and RNA-Seq data

• Xing et al. 2006
 • EM algorithm for estimating abundances of all possible isoforms given splice graph and EST data

• Montgomery et al. 2010, Singh et al. 2011
 • Graph flow-based methods for quantification/differential splicing given RNA-Seq data

• Rogers et al. 2012
 • SpliceGrapher: construct splice graph structure given RNA-Seq data
Probabilistic Splice Graphs

- Jenkins et al. 2006

- Compact **probabilistic model** representing isoform frequencies in terms of frequencies of individual splice events

- Originally used by Jenkins et al. for EST analysis
Probabilistic Splice Graph Complexity

known isoforms

“line graph”

“exon graph”

“higher-order exon graph”

“unfactorized graph”
Advantages of PSGs

• **Compact** description of the possible isoforms of a gene

 - Models the frequencies of potentially exponentially many isoforms with a *polynomial* number of parameters

 - Models *dependence or independence* of splice events

• The parameters of a PSG are more often *identifiable* than a model that has a parameter for every possible isoform

• Splice graphs are *naturally-produced structures* from transcriptome assemblers
PSGs are alternative “parsimonious” models

- Other methods find smallest set of isoform structures that explain the data
 - Cufflinks (Trapnell et al., 2010)
 - IsoLasso (Li et al., 2011)
 - NSMAP (Xia et al., 2011)
 - SLIDE (Li et al., 2011)

- PSG models are another form of parsimonious model
 - Minimize the number of splice event parameters
 - Assumption of independence between splice events
Our contributions

• Application of PSGs to RNA-Seq data

 • Combined model of PSG with RNA-Seq generative model

 • Efficient PSG parameter estimation with EM and dynamic programming

 • Identifiability proofs for PSG with RNA-Seq data

 • Differential processing (splicing) tests

The PSG parameter inference task

• Given: RNA-Seq reads and a PSG structure

CCTTCNCACTTCGTTTCCCAC
TTTTTNCAAGAGTTTTTTCTTG
GAACANTCCAACGCTTTGGA
GGAAANAAGACCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCTTTGCGTT

• Do: Estimate the (ML or MAP) parameters for the model
A model of RNA-Seq from PSGs

- RSEM model extended to probabilistic splice graphs
- Fragment length distribution, quality scores, read mapping ambiguity
- Dynamic programming algorithms → polynomial time inference for genes with an exponential number of isoforms

Probability of including vertex \(j \) given that vertex \(i \) was in transcript

\[
 f(i, j) = \sum_{s: s_1 = i, s_{|s|} = j} w(s) = \begin{cases}
 1 & i = j \\
 \frac{1}{\sum_k \alpha_{k,j} f(i, k)} & i \neq j
\end{cases}
\]

Expected prefix length

\[
 d_p(i) = \ell_i + \frac{1}{f(0, i)} \sum_j f(0, j) \alpha_{j,i} d_p(j)
\]

Expected suffix length

\[
 d_q(i) = \ell_i + \sum_j \alpha_{i,j} d_q(j)
\]
EM for PSG parameter estimation

- E-step: compute the expectation of the number of times edge \((i,j)\) is used

\[
E[Z_{nij}] = \frac{\sum_{(b,s) \in \pi(r)} g(s, i, j)}{\sum_{(b,s) \in \pi(r)} g(s)}
\]

\[
g(s) = f(0, s_1)w(s)
\]

\[
g(s, i, j) = \begin{cases}
 f(0, s_1)w(s) & (i, j) \in s \\
 f(0, i)\alpha_{ij}f(j, s_1)w(s) & \text{if } \exists \text{ path from } v_j \text{ to } s_1 \\
 f(0, s_1)w(s)f(s_{|s|}, i)\alpha_{ij} & \text{if } \exists \text{ path from } s_{|s|} \text{ to } v_i \\
 0 & \text{otherwise}
\end{cases}
\]

- M-step: maximize the completely-observed likelihood given the edge counts

\[
\alpha_{ij} = \frac{z_{ij}}{\sum_{k} z_{ik} d_p(i) + d_q(k)}
\]
Identifiability of PSGs with RNA-Seq data

- **Identifiability:** \(P(D|M, \theta) = P(D|M, \theta'), \forall D \not\Rightarrow \theta = \theta' \)

- **Proposition:** If for all edges \((u, v)\), there exists a read that is uniquely derived from that edge, or \(v\) has indegree 1 and there exists a read that is uniquely derived from \(v\), then the PSG is identifiable.
The differential processing (DP) task

- Given: RNA-Seq reads from two conditions and a PSG structure

<table>
<thead>
<tr>
<th>condition 1</th>
<th>condition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTTCNCACTTCGTTTCCCAC</td>
<td>CATATCGTCGTAGCTAGTACG</td>
</tr>
<tr>
<td>TTTTTNCAGAGTTTTTTCTTG</td>
<td>CCACACTAGGCTACGTCGCA</td>
</tr>
<tr>
<td>GAACANTCAACCTGTTGAGC</td>
<td>TCGACGCTACCAGGCATCGGC</td>
</tr>
<tr>
<td>GGAANAAGACCCCTGTTGAGC</td>
<td>ACTAGTACGTAAGTATAGCT</td>
</tr>
<tr>
<td>CCCGNGATCCGCTGGGACAA</td>
<td>GGATGCTAGATGGCTATCGG</td>
</tr>
<tr>
<td>GCAGCATATTGATAGATAACT</td>
<td>GCATTAGGGAAGCTCATCGA</td>
</tr>
<tr>
<td>CTTTCNCACTTCGTTTCCCAC</td>
<td>AACCATCGGAAAGGCCGTTTAA</td>
</tr>
<tr>
<td>CATCTAGCACTGCGTTGCGTT</td>
<td>CAGCTAGGCGCTAGGCGCTTT</td>
</tr>
<tr>
<td>CATCTAGCACTGCGTTGCGTT</td>
<td>CATGCTAGCGGCTAGGCGCTTT</td>
</tr>
<tr>
<td>CATCTAGCACTGCGTTGCGTT</td>
<td>CATGCTAGCGGCTAGGCGCTTT</td>
</tr>
</tbody>
</table>

- Do: Determine if the processing frequencies are different

\[
\alpha_1 = \alpha'_1 \quad \text{and} \quad \alpha_2 = \alpha'_2 \quad \text{or} \quad \alpha_1 = \alpha'_1 \quad \text{or} \quad \alpha_2 = \alpha'_2
\]
Our approach to the differential processing (DP) task

- Simple likelihood ratio tests with PSG model

 \[LR = \frac{P(R^1|\hat{\alpha}^1)P(R^2|\hat{\alpha}^2)}{P(R^1 \cup R^2|\hat{\alpha}^{12})} \]

- Test for null hypothesis that frequencies of edges out of one vertex \((i) \) are the same

 \[LR = \frac{P(R^1|\hat{\alpha}^1)P(R^2|\hat{\alpha}^2)}{P(R^1, R^2|\hat{\alpha}^1_i, \hat{\alpha}^2_i, \hat{\alpha}^{12}_i)} \]
Overview

• Part I - The problem

• Part II - A solution: \textit{Probabilistic Splice Graphs (PSGs)}

• Part III - Evaluating PSG methodology
Efficient inference for highly-spliced genes

• DSCAM running time test

• 23,976 isoforms

• 184 read pairs from a modENCODE sample

<table>
<thead>
<tr>
<th>Method</th>
<th>RSEM</th>
<th>Cufflinks</th>
<th>PSG EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running time</td>
<td>Not possible</td>
<td>> 6 hours (> 90 GB RAM)</td>
<td>< 3 seconds</td>
</tr>
</tbody>
</table>
A simple method for comparison

- The **Junction-Read** (JR) method

- Keep only reads that align to the splice junctions (edges in the PSG)

- Throws away data, but is very robust to model assumption violations
Convergence with simulated data

![Graph showing convergence with simulated data](image-url)
Comparisons on real data

• Require notion of “distance” between estimates from different methods

• Our distance measure:

 • per vertex

 • maximum difference between probability estimates on out-edges of vertex (L-∞ norm)

\[
distance_v(A, B) = \max(|0.6 - 0.2|, |0.5 - 0.3|, |0.3 - 0.1|) = 0.4
\]
How close are the estimates from JR and EM on real data?

Maximum difference between edge probabilities

Vertices from 88 most abundant (> 5000 reads) alternatively-spliced genes in a modENCODE fly data set
Convergence of estimates on real data

![Graph showing the convergence of estimates on real data. The x-axis represents the size of the read set, ranging from 10 to 5k. The y-axis represents the mean distance from all-read learned value, ranging from 0.0 to 0.4. The graph includes lines for Single EM, Single JR, Paired EM, and Paired JR.]
Comparing PSGs of different complexity

- Same set of fly data
- Estimated with three classes of PSG: line, exon, full-length
- Compared estimates to those from JR (gold-standard)
- No statistically-significant difference between exon and full-length graph estimates
Summary of Junction-Read comparison results

• Estimates using PSG models are generally close to those from the simplistic JR-method
 • PSG model assumptions appear to be reasonable

• PSG estimates converge more quickly as the data set increases in size
 • Our EM estimation procedure uses information from all reads, not just those that span splice junctions

• Exon-graph estimates as good as those using traditional full-length isoform models
 • Independence assumptions of exon graphs appear to be reasonable
Differential processing detection

DP Accuracy on real data

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>Sample 2</th>
<th>PSG</th>
<th>FDM</th>
<th>Cuffdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEU Rep 1</td>
<td>CEU Rep 2</td>
<td>0</td>
<td>0</td>
<td>1187</td>
</tr>
<tr>
<td>CEU Rep 1</td>
<td>Yoruban Rep 1</td>
<td>39</td>
<td>24</td>
<td>269</td>
</tr>
<tr>
<td>CEU Rep 1</td>
<td>Yoruban Rep 2</td>
<td>46</td>
<td>24</td>
<td>282</td>
</tr>
<tr>
<td>CEU Rep 2</td>
<td>Yoruban Rep 1</td>
<td>45</td>
<td>22</td>
<td>253</td>
</tr>
<tr>
<td>CEU Rep 2</td>
<td>Yoruban Rep 2</td>
<td>38</td>
<td>29</td>
<td>260</td>
</tr>
<tr>
<td>Yoruban Rep 1</td>
<td>Yoruban Rep 2</td>
<td>0</td>
<td>0</td>
<td>1253</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 1</td>
<td>CME_W1_Cl.8+ Rep 2</td>
<td>16</td>
<td>32</td>
<td>204</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 1</td>
<td>Kc167</td>
<td>365</td>
<td>207</td>
<td>7</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 1</td>
<td>ML-DmBG3-c2</td>
<td>232</td>
<td>164</td>
<td>6</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 1</td>
<td>S2-DRSC</td>
<td>406</td>
<td>228</td>
<td>12</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 2</td>
<td>Kc167</td>
<td>319</td>
<td>211</td>
<td>16</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 2</td>
<td>ML-DmBG3-c2</td>
<td>260</td>
<td>126</td>
<td>16</td>
</tr>
<tr>
<td>CME_W1_Cl.8+ Rep 2</td>
<td>S2-DRSC</td>
<td>353</td>
<td>220</td>
<td>17</td>
</tr>
<tr>
<td>Kc167</td>
<td>ML-DmBG3-c2</td>
<td>384</td>
<td>321</td>
<td>12</td>
</tr>
<tr>
<td>Kc167</td>
<td>S2-DRSC</td>
<td>419</td>
<td>209</td>
<td>12</td>
</tr>
<tr>
<td>ML-DmBG3-c2</td>
<td>S2-DRSC</td>
<td>431</td>
<td>287</td>
<td>4</td>
</tr>
<tr>
<td>HUVEC Rep 1</td>
<td>HUVEC Rep 2</td>
<td>35</td>
<td>43</td>
<td>440</td>
</tr>
<tr>
<td>HUVEC Rep 1</td>
<td>K562 Rep 1</td>
<td>376</td>
<td>344</td>
<td>8</td>
</tr>
<tr>
<td>HUVEC Rep 1</td>
<td>K562 Rep 2</td>
<td>379</td>
<td>302</td>
<td>12</td>
</tr>
<tr>
<td>HUVEC Rep 2</td>
<td>K562 Rep 1</td>
<td>442</td>
<td>382</td>
<td>8</td>
</tr>
<tr>
<td>HUVEC Rep 2</td>
<td>K562 Rep 2</td>
<td>355</td>
<td>285</td>
<td>10</td>
</tr>
<tr>
<td>K562 Rep 1</td>
<td>K562 Rep 2</td>
<td>224</td>
<td>308</td>
<td>168</td>
</tr>
</tbody>
</table>
Differential processing detection

DP accuracy on simulated data

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Predicted DP</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSG
A Rep 1</td>
<td>A Rep 2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 1</td>
<td>257</td>
<td>0.60</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 2</td>
<td>230</td>
<td>0.54</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 1</td>
<td>251</td>
<td>0.59</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 2</td>
<td>235</td>
<td>0.54</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>B Rep 1</td>
<td>B Rep 2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuffdiff
A Rep 1</td>
<td>A Rep 2</td>
<td>379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 1</td>
<td>49</td>
<td>0.11</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 2</td>
<td>58</td>
<td>0.13</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 1</td>
<td>48</td>
<td>0.12</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 2</td>
<td>51</td>
<td>0.11</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>B Rep 1</td>
<td>B Rep 2</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDM
A Rep 1</td>
<td>A Rep 2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 1</td>
<td>311</td>
<td>0.39</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>A Rep 1</td>
<td>B Rep 2</td>
<td>255</td>
<td>0.28</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 1</td>
<td>320</td>
<td>0.37</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>A Rep 2</td>
<td>B Rep 2</td>
<td>242</td>
<td>0.24</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>B Rep 1</td>
<td>B Rep 2</td>
<td>148</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulations based on two ENCODE cell lines, 10% of genes selected to be DP
Next steps for modeling RNA-Seq with PSGs

- Graph construction
- Exon discovery
- Splice junction discovery
- Model selection
- Learning dependencies between splice events
• **Alternative splicing** is a significant complication in RNA-Seq analysis

• **Probabilistic Splice Graphs** enable identifiable models for alternatively spliced genes with efficient inference algorithms

• **Differential processing** (splicing) tests with PSG models look promising