Technology and methodology for inferring genetic variation and discovering associations with phenotypes

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Colin Dewey
cdewey@biostat.wisc.edu

Spring 2015
Outline

• Variation detection
 – Array technologies
 – Whole-genome sequencing

• The basics of GWAS
 – Testing SNPs for association
 – Correcting for multiple-testing
Variation detecting technologies

• Array-based technologies
 – Relies on hybridization of sample DNA to pre-specified “probes”
 – Each probe is chosen to measure a single possible variant: SNP, CNV, etc.

• Sequencing-based technologies
 – Whole-genome shotgun sequence, usually at low coverage (e.g., 4-8x)
 – Align reads to “reference” genome: mismatches, indels, etc. indicate variations
Array-based technologies

• Currently two major players
• Affymetrix Genome-Wide Human SNP Arrays
 – Used for HapMap project, Navigenics service
• Illumina BeadChips
 – Used by 23andMe, deCODEme services
Affymetrix SNP arrays

- Probes for ~900K SNPs
- Another ~900K probes for CNV analysis
- Differential hybridization – one probe for each possible SNP allele
Illumina BeadChips

- **OmniExpress+**
 - ~900K SNPs (700K fixed, 200 custom)
- Array with probes immediately adjacent to variant location
- One base extension (like sequencing) to determine base at variant location
Sequencing-based genotyping

compute $\arg\max_{\text{genotype}} P(\text{genotype} \mid \text{reads}, \text{reference})$ for each genomic position
GWAS data

<table>
<thead>
<tr>
<th>Individual</th>
<th>Genotype at Position 1</th>
<th>Genotype at Position 2</th>
<th>Genotype at Position 3</th>
<th>…</th>
<th>Genotype at Position M</th>
<th>Disease?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CC</td>
<td>AG</td>
<td>GG</td>
<td></td>
<td>AA</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>AC</td>
<td>AA</td>
<td>TG</td>
<td></td>
<td>AA</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>AA</td>
<td>AA</td>
<td>GG</td>
<td></td>
<td>AT</td>
<td>Y</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>AC</td>
<td>AA</td>
<td>TT</td>
<td></td>
<td>AT</td>
<td>N</td>
</tr>
</tbody>
</table>

- N individuals genotyped at M positions
- Disease status (or other phenotype) is measured for each individual
GWAS task

• *Given*: genotypes and phenotypes of individuals in a population
• *Do*: Identify which genomic positions are associated with a given phenotype
Can we identify causal SNPs?

- Typically only genotype at 1 million sites
- Humans vary at more than 10 million sites
- Unlikely that an associated SNP is causal
- “Tag SNPs”: however, associated SNPs “tag” blocks of the genome that contain the causal variant

haplotype block: interval in which little recombination has been observed
Direct and indirect associations

Phenotype

direct association

indirect association

direct association (haplotype block)
Basics of association testing

• Test each site individually for association with a statistical test
 – each site is assigned a p-value for the null hypothesis that the site is not associated with the phenotype

• Correct for the fact that we are testing multiple hypotheses
Basic genotype test

- Assuming binary phenotype (e.g., disease/no disease)
- Test for significant association with Pearson’s Chi-square test or Fisher’s Exact Test

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>AT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>No disease</td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Chi-square test p-value = 4.1e-5 (2 degrees of freedom)
Fisher’s exact test p-value = 3.4e-5
Armitage (trend) test

- Can gain more statistical power if we can assume that probability of trait is linear in the number of one of the alleles
Trend test example

<table>
<thead>
<tr>
<th>phenotype</th>
<th>genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>No disease</td>
<td>70</td>
</tr>
</tbody>
</table>

Disease proportion | 0.36 | 0.60 | 0.75 |

Trend in Proportions test p-value = 8.1e-6

(note that this is a smaller p-value than from the basic genotype test)
GWAS Challenges

- Population structure
- Multiple testing
- Interacting variants
Population structure issues

• If certain populations disproportionately represent cases or controls, then spurious associations may be identified.
Multiple testing

- In the genome-age, we have the ability to perform large numbers of statistical tests simultaneously
 - SNP associations (~1 million)
 - Gene differential expression tests (~ 50 thousand)
- Do traditional p-value thresholds apply in these cases?
Expression in BRCA1 and BRCA2 Mutation-Positive Tumors

- 7 patients with BRCA1 mutation-positive tumors vs. 7 patients with BRCA2 mutation-positive tumors
- 5631 genes assayed

Expression in BRCA1 and BRCA2 Mutation-Positive Tumors

• Key question: which genes are differentially expressed in these two sets of tumors?

• Methodology: for each gene, use a statistical test to assess the hypothesis that the expression levels differ in the two sets
Hypothesis Testing

• consider two competing hypotheses for a given gene:
 – *null hypothesis*: the expression levels in the first set come from the same distribution as the levels in the second set
 – *alternative hypothesis*: they come from different distributions

• we first calculate a test statistic for these measurements, and then determine its *p-value*

• *p-value*: the probability of observing a test statistic that is as extreme or more extreme than the one we have, assuming the null hypothesis is true
Calculating a p-value

1. calculate test statistic (e.g. T statistic)

\[T = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2 + s_2^2}{n}}} \]

where \(\bar{x}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij} \)

\[s_j^2 = \frac{1}{n_j - 1} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2 \]

2. see how much mass in null distribution with value this extreme or more

If test statistic is here, \(p = 0.034 \)
The Multiple Testing Problem

• if we’re testing one gene, the p-value is a useful measure of whether the variation of the gene’s expression across two groups is significant

• suppose that most genes are not differentially expressed (this is the typical situation)

• if we’re testing 5000 genes that don’t have a significant change in their expression (i.e. the null hypothesis holds), we’d still expect about 250 of them to have p-values ≤ 0.05

• Can think of p-value as the false positive rate over null genes
Family-wise error rate

• One way to deal with the multiple testing problem is to control the probability of rejecting at least one null hypothesis when all genes are null
• This is the family-wise error rate (FWER)
• Suppose you tested 5000 genes and predicted that all genes with \(p \)-values \(\leq 0.05 \) were differentially expressed

\[
FWER = 1 - (1 - 0.05)^{5000} \approx 1
\]

– you are guaranteed to be wrong at least once!
– (above assumes tests are independent)
Bonferroni correction

• Simplest approach
• Choose a p-value threshold β such that the FWER is $\leq \alpha$

$$\alpha = 1 - (1 - \beta)^g$$

• where g is the number of genes (tests)

$$\text{for } \beta g \ll 1, \quad \beta \approx \frac{\alpha}{g}$$

• For $g=5000$ and $\alpha = 0.05$ we set a p-value threshold of $1e-5$
Loss of power with FWER

• FWER, and Bonferroni in particular, reduce our power to reject null hypotheses
 – As g gets large, p-value threshold gets very small

• For expression analysis, FWER and false positive rate are not really the primary concern
 – We can live with false positives
 – We just don’t want too many of them relative to the total number of genes called significant
The False Discovery Rate
[Benjamini & Hochberg ‘95; Storey & Tibshirani ‘02]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
</tr>
</tbody>
</table>

- suppose we pick a threshold, and call genes above this threshold “significant”

- the false discovery rate is the expected fraction of these that are mistakenly called significant (i.e. are truly null)
The False Discovery Rate

\[F(t) = \# \{ \text{null } p_i \leq t; \ i = 1 \ldots m \} \]

\[S(t) = \# \{ p_i \leq t; \ i = 1 \ldots m \} \]

\[FDR(t) = E\left[\frac{F(t)}{S(t)} \right] \approx \frac{E[F(t)]}{E[S(t)]} \]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
</tr>
</tbody>
</table>

genes
The False Discovery Rate

• to compute the FDR for a threshold t, we need to estimate $E[F(t)]$ and $E[S(t)]$

$$FDR(t) = E\left[\frac{F(t)}{S(t)} \right] \approx \frac{E[F(t)]}{E[S(t)]}$$

$S(t) = \# \{ p_i \leq t; \ i = 1 \ldots m \}$

$F(t) = \# \{ \text{null} \ p_i \leq t; \ i = 1 \ldots m \}$

• so how can we estimate $E[F(t)]$?
Benjamini-Hochberg

• Suppose the fraction of genes that are truly null is very close to 1
• Then

\[E[F(t)] = E[\#\{\text{null } p_i \leq t; \ i = 1 \ldots m\}] \approx mt \]

• because p-values are uniformly distributed over \([0,1]\) under the null model
• Suppose we choose a threshold \(t\) and observe that \(S(t) = k\)

\[FDR(t) \approx \frac{E[F(t)]}{S(t)} = \frac{mt}{k} \]
Benjamini-Hochberg procedure

- Suppose we want the FDR ≤ α
- Sort the p-values of your genes so that they are in increasing order

\[P_1 \leq P_2 \ldots \leq P_m \]

- Select the largest k such that

\[P_k \leq \frac{k}{m} \alpha \]
What Fraction of the Genes are Truly Null?

- consider the histogram of p-values from Hedenfalk et al.
 - includes both null and alternative genes
 - but we expect null p-values to be uniformly distributed

\[\hat{\pi}_0(\lambda) = \frac{\# \{ p_i > \lambda; \; i = 1 \ldots m \}}{m(1 - \lambda)} \]

Figure from Storey & Tibshirani *PNAS* 100(16), 2002.
Storey & Tibshirani approach

estimated proportion of null p-values

\[
FDR(t) \approx \frac{\hat{\pi}_0 \times m \times t}{\# \{p_i \leq t\}}
\]

<table>
<thead>
<tr>
<th>gene</th>
<th>p-value</th>
<th>rank</th>
<th>q-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0001</td>
<td>1</td>
<td>0.0010</td>
</tr>
<tr>
<td>F</td>
<td>0.001</td>
<td>2</td>
<td>0.0050</td>
</tr>
<tr>
<td>G</td>
<td>0.016</td>
<td>3</td>
<td>0.0475</td>
</tr>
<tr>
<td>J</td>
<td>0.019</td>
<td>4</td>
<td>0.0475</td>
</tr>
<tr>
<td>I</td>
<td>0.030</td>
<td>5</td>
<td>0.0600</td>
</tr>
<tr>
<td>B</td>
<td>0.052</td>
<td>6</td>
<td>0.0867</td>
</tr>
<tr>
<td>A</td>
<td>0.10</td>
<td>7</td>
<td>0.1430</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>8</td>
<td>0.4380</td>
</tr>
<tr>
<td>H</td>
<td>0.51</td>
<td>9</td>
<td>0.5670</td>
</tr>
<tr>
<td>E</td>
<td>0.70</td>
<td>10</td>
<td>0.7000</td>
</tr>
</tbody>
</table>

\[\hat{q}(p_i) = \min_{t \geq p_i} FDR(t) \]

pick minimum FDR for all greater thresholds
q-values vs. p-values for Hedenfalk et al.

Figure from Storey & Tibshirani *PNAS* 100(16), 2002.
FDR Summary

- in many high-throughput experiments, we want to know what is different across two sets of conditions/individuals (e.g. which genes are differentially expressed)

- because of the multiple testing problem, p-values may not be so informative in such cases

- the FDR, however, tells us which fraction of significant features are likely to be null

- q-values based on the FDR can be readily computed from p-values (see Storey’s package QVALUE)
Back to GWAS: Interacting variants

• Most traits are *complex*: not the result of a single gene or genomic position

• Ideally, we’d like to test *subsets* of variants for associations with traits
 – But there are a *huge* number of *subsets*!
 – Multiple testing correction will likely result in zero association calls

• Area of research
 – Only test carefully selected *subsets*
 – Bayesian version: put prior on *subsets*
The era of “BIG Data”