
University of Wisconsin-Madison Spring 2016

BMI/CS 776: Advanced Bioinformatics Homework #3

Prof. Anthony Gitter Due: Thu, Apr 14, 2016, 11:59 PM

1/6

Assignment Goals

 Learn an alternative strategy for predicting source-target connections in a network

 Gain familiarity with the RNA-seq and mass spectrometry quantification tasks

Part 1: Pathway Prediction

In class, we studied the ResponseNet algorithm for predicting cellular pathways that connect source

proteins (e.g. genetic screen hits) to target proteins (e.g. transcriptional regulators) using network flow.

Many other graph algorithms have been used to solve related biological problems. Here will implement the

k-shortest paths approach to this problem, which remains a popular technique for predicting pathways1.

Given a weighted, undirected network, a list of source nodes, and a list of target nodes, your program

should identify all source-target paths in the network and output the k paths with the lowest cost. The

weight on an edge represents the cost of using that edge to move from one node to the other. We will only

consider simple paths, which are paths that do not contain any particular node more than one time. A

path’s cost is the sum of all edge costs along the path.

We outline below one possible strategy for solving this problem, but you are welcome to implement an

alternative algorithm or use different data structures. One solution to this problem uses a depth-first search

to enumerate all simple source-target paths and then sorts the paths to identify the k paths with the lowest

cost. There are two main components required to implement a depth-first search: a data structure for

retrieving the neighbors of a node (nodes connected by an undirected edge) quickly and a recursive

function for the search.

Two common data structures for representing a graph are the adjacency

matrix and adjacency list. Either is suitable for this problem because the

graph instances will be small. Consider the small graph to the right to

see how to form an adjacency matrix and adjacency list.

Figure 1: Example Graph

1 http://www.nature.com/articles/npjsba20162

University of Wisconsin-Madison Spring 2016

BMI/CS 776: Advanced Bioinformatics Homework #3

Prof. Anthony Gitter Due: Thu, Apr 14, 2016, 11:59 PM

2/6

An adjacency matrix is a matrix with one row and column for every node. The entries in the matrix are 0 if

there is no edge between the row node and column node and the weight of the edge if the edge does exist.

The matrix is symmetric for an undirected graph. For the example graph in Figure 1:

1 2 3 4

1 0.0 0.1 0.3 0.0

2 0.1 0.0 0.0 0.8

3 0.3 0.0 0.0 0.2

4 0.0 0.8 0.2 0.0

An adjacency list has an entry that tracks the neighbors of each node. Because we have a weighted graph,

the adjacency list must also track the edge costs. This data structure can be implemented using dictionaries,

arrays, or other basic data structures, but here we assume dictionaries are used. In that case, the primary

dictionary has a key for every node in the graph. The associated value for that key is another dictionary

with the neighbors of that node. The neighbor dictionary has the neighboring node as the key and the edge

cost as the value. An example for the graph above that uses key:value syntax:

{

 1: {2: 0.1, 3: 0.3},

 2: {1: 0.1, 4: 0.8},

 3: {1: 0.3, 4: 0.2},

 4: {2: 0.8, 3: 0.2}

}

After creating the graph data structure, we need to implement a recursive function to perform the depth-first

search. Without detailing the variables that need to be passed during each recursive call, the pseudocode

below outlines the major functionality of this function. Note that we need to track which nodes have been

visited already on the path in order to avoid cycles. We terminate the search when we reach any target

node.

dfs(node, visited, …)

 for neighbors of node

 if neighbor not in visited

 if neighbor in targets

 add path to discovered_paths

 else

 dfs(neighbor, {visited + node}, …)

University of Wisconsin-Madison Spring 2016

BMI/CS 776: Advanced Bioinformatics Homework #3

Prof. Anthony Gitter Due: Thu, Apr 14, 2016, 11:59 PM

3/6

Your function may need to return discovered_paths depending on whether you store this is a local or

global variable. Part of your task is to determine how to use the recursive calls to construct the order of

nodes along the path and the cumulative path cost.

Your program should be callable from the command line as follows:

PredictPaths <graph file> <k> <paths file>

Where

 <graph file> a text file describing the graph and formatted as follows:

N Number of nodes in the graph labelled from 1 to n

s1 s2 s3 … List of source node ids separated by whitespaces

t1 t2 t3 … List of target node ids separated by whitespaces

n1 n2 w1

n3 n4 w2

n5 n6 w3

…

List of weighted undirected edges one per line. The

components of each line are separated by whitespaces

 <k> is an integer value represents the number of paths with lowest cost that should be returned. In

case the kth path and the (k+1)th path have the same cost, the program may return either randomly.

 <paths file> is a text file into which the paths and their corresponding costs should be written.

The paths should be sorted in an increasing order of their cost and formatted as follows:

1 -> 5 -> 9 [0.5000]

1 -> 4 -> 5 -> 9 [0.9000]

3 -> 6 -> 10 [1.0000]

2 -> 8 -> 9 [1.1000]

1 -> 5 -> 7 -> 9 [1.9000]

…

The line 1 -> 4 -> 5 -> 9 [0.9000] means there is a path starts at source node 1, passes

through the nodes 4 and 5 to reach the target node 9 with a total path cost of 0.9000.

Example input files and sample scripts can be downloaded from

https://www.biostat.wisc.edu/bmi776/hw/hw3_files.zip

To test your program, you may use the graph in Figure 2. The file describing the graph is called

testgraph.txt and the expected output when trying to predict the 6 lowest cost paths are stored in the

file called testpaths.txt.

University of Wisconsin-Madison Spring 2016

BMI/CS 776: Advanced Bioinformatics Homework #3

Prof. Anthony Gitter Due: Thu, Apr 14, 2016, 11:59 PM

4/6

Figure 2: Test Graph

If you are using a language that is not compiled into machine code, such as Java, then you should make a

small script called PredictPaths that accepts the command line arguments and invokes the appropriate

source code and interpreter.

Recall that only standard libraries for the chosen language may be used. Third-party libraries must be

approved by the instructor or TA on the Piazza forum.

Part 2: RNA-seq Rescue Algorithm

The full RSEM algorithm is too complicated to execute manually, but we can use the RNA-seq rescue

method presented in class to approximate one iteration of expectation maximization. The bipartite graph

below contains two types of nodes: transcripts and read groups. The transcript nodes contain a transcript id

and the transcript length in base pairs (bp). The read nodes contain the read counts for a group of reads that

all align to the same transcripts. Transcript-read group edges designate the transcripts to which each read

group aligns.

University of Wisconsin-Madison Spring 2016

BMI/CS 776: Advanced Bioinformatics Homework #3

Prof. Anthony Gitter Due: Thu, Apr 14, 2016, 11:59 PM

5/6

Figure 3: Bipartite Graph

2A: Estimating relative abundance

Use the rescue method to calculate the relative abundance for the five transcripts to three decimal places.

Show your work for partial credit.

2B: Estimating absolute abundance

Transcript X is a RNA spike-in. 1000 copies of transcript X were mixed into the experimental sample

when preparing the sample for RNA-seq. That is, its absolute abundance is 1000. Use the relative

abundances you calculated above to calculate the absolute abundances for the other four transcripts,

rounded to the nearest whole number. Show your work for partial credit.

Hint: Review the “Issues with relative abundance measures” slide from the RNA-seq lecture. Given the

relative abundances for all six genes and the absolute abundance of Gene 6, you can derive the absolute

abundances of Genes 1 through 5.

University of Wisconsin-Madison Spring 2016

BMI/CS 776: Advanced Bioinformatics Homework #3

Prof. Anthony Gitter Due: Thu, Apr 14, 2016, 11:59 PM

6/6

Part 3: Mass Spectrometry Theoretical Spectrum

In this problem you will generate a simplified version of a theoretical spectrum to better understand the

relationship between peptide fragments and spectra. This problem is inspired by similar problems from the

Rosalind bioinformatics programming platform. Consult the Rosalind problems

http://rosalind.info/problems/prtm/ and http://rosalind.info/problems/spec/ for a review of mass

spectrometry terminology.

For each of the peptide fragments below, you will create a table that shows the masses of all possible ions

that correspond to the peaks in the theoretical spectrum. Specifically, for a peptide fragment containing k

amino acids, provide a two-column table in which the first column lists the k-1 b-ions and k-1 y-ions.

Enumerate all b-ions and y-ions even if they are redundant. In the second column of the table, provide the

monoisotopic mass of the ion (amino acid string). An ion’s monoisotopic mass is the sum of the

monoisotopic masses of all amino acids in the string, where the amino acid masses can be obtained from

the Rosalind table http://rosalind.info/glossary/monoisotopic-mass-table/. You do not need to draw the

theoretical spectrum so you can ignore the charge of the ions.

3A: First peptide fragment

Create the table for the peptide fragment AYDNV.

3B: Second peptide fragment

Create the table for the peptide fragment CCHNQC.

3C: Third peptide fragment

Create the table for the peptide fragment GHYLCNA.

Submission Instructions

a) Login to the biostat server mi1.biostat.wisc.edu or mi2.biostat.wisc.edu using your

BMI (biostat) username and password.

b) Copy any relevant files to the directory /u/medinfo/handin/bmi776/hw3/<USERNAME>

where <USERNAME> is your BMI (biostat) username. For the programming part, make sure to

submit the source code as well as any required files to run the program on the biostat server. For

the rest of the assignment, if not otherwise instructed, compile your answers in a single file and

submit as <USERNAME>.pdf.

c) Make sure to write the number of late days used at the first line of your pdf file.

d) If you are submitting a program, make sure it is runnable from the script and not only from the

source code.

http://rosalind.info/problems/prtm/
http://rosalind.info/problems/spec/
http://rosalind.info/glossary/monoisotopic-mass-table/

