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Goals for Lecture

Key concepts

• How knowledge about sequence elements can be used 

to make representational choices (topology, length 

distributions) in an HMM

• Maximal dependence decomposition (MDD)

• Understanding MDD as a graphical model

2



Eukaryotic Gene Structure
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Each shape represents a functional unit 

of a gene or genomic region

Pairs of intron/exon units represent

the different ways an intron can interrupt

a coding sequence  (after 1st base in codon, 

after 2nd base or after 3rd base)

Complementary submodel 

(not shown) detects genes on 

opposite DNA strand

The GENSCAN HMM for Eukaryotic 

Gene Finding [Burge & Karlin ‘97]

F
ig

u
re

 f
ro

m
 B

u
rg

e
 &

 K
a

rl
in

, 
J
o

u
rn

a
l 
o

f 
M

o
le

c
u

la
r 

B
io

lo
g

y
, 
1

9
9

7

4



ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA

Parsing a DNA Sequence

The Viterbi path represents 

a parse of a given sequence,

predicting exons, introns, etc.

GAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAAACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA
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The GENSCAN HMM

• For each sequence type, GENSCAN models

– the length distribution 

– the sequence composition

• Length distribution models vary depending on 
sequence type

* nonparametric (using histograms)

– parametric (using geometric distributions)

– fixed-length

• Sequence composition models vary depending on type

– 5th-order inhomogeneous

– 5th-order homogenous

– 1st-order inhomogeneous

* tree-structured variable memory (MDD)
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• Semi-Markov models are well-motivated for some 

sequence elements (e.g. exons)

– Semi-Markov: model length duration of hidden states

– Also called generalized hidden Markov model

• Dependency structure of splice sites motivates the 

use of MDD models, which can represent context-

specific dependencies

– Imagine a PWM that allows for complex column-column 

dependencies

– Those dependencies can be conditional on the values of 

other columns

The GENSCAN HMM
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Length Distributions of Introns/Exons

geometric dist.

provides good fit

Introns Initial exons

Internal exons Terminal exons

geometric dist.

provides poor fit
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Splice Signals

Figures from Yi Xing

donor sites acceptor sites

exon exon

-1-2-3 1 2 3 4 5 6

• There are significant dependencies among non-adjacent 
positions in donor splice signals
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Splice Signals

• Donor splice signals driven by complementarity to U1 
small nuclear RNA
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Motivation for MDD

• How can we detect significant dependencies between 
non-adjacent positions?

pos i

matches 

consensus

pos i does 

NOT match 

consensus

pos j = A

pos j = C

pos j = G

pos j = T

ATGGGTCCATCTACATATACACATCCATT

TATCTCTACCGCGCTAGCCTAGTCGGATT

GCTACGACCGCTAACAGCTCGACCTGTGA

CCTTCGGGCTATATATTATTCTTCTTATA

TCGAAATAGACTAGCTAAATCGCTAGCTA

TCCGCGCTCGCTAACAGCTACCAAATAGA

CGTAGCTAGATCGAATCGAAAGCCCTACT

ACACCAGGCTTCTAATCGATTAGATCCCA

i j

• Compute χ2 values using 4×2 table
alternative hypothesis: distribution for column j depends on 

whether the consensus base is in column i

null hypothesis: distribution for column j is independent of 
consensus status in column i
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Motivation for MDD

• Table shows χ2 values for pairs of positions around donor 
sites

• Values marked with * show statistically significant 
dependency 
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The Maximal Dependence 

Decomposition Approach

• Induce a tree that represents the dependency 
structure apparent in the data

• Induce partial position weight matrices for each node 
and leaf of tree

• Use the tree + weight matrices to calculate the 
probability of a given sequence
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Structure of a MDD Learned Tree

Figure from Burge & Karlin, Journal of Molecular Biology, 1997

A, C, or U at pos 5 (not G)
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Explaining a Sequence

with a MDD Tree
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• Shown are 

selected position 

weight matrices 

for the tree
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Explaining a Sequence 

with a MDD Tree

calculate P(x5)

if  x5 ≠ G

use the weight matrix for H5 subset

else

calculate P(x-1) from G5 subset

if  x-1 ≠ G

use the WM for G5H-1 subset

else

calculate Pr(x-2) from G5G-1 subset
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Explaining a Sequence 

with a MDD Tree

6.07.05.01.0117.05.03.0)AAGGUCAGU( P
-3 -1 1 6

• Using model from previous slide
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The MDD Algorithm: Finding the Tree

Given: a set of aligned training sequences T

positions P = {1, …, k}

tree = find_MDD_subtree(T, P)

find_MDD_subtree(T, P)

for each position i in P

determine the consensus base Ci

calculate dependence between Ci , other positions

if stopping criteria not met

choose the value of i such that Si is maximal

make a node with Ci as the test

create a single-column PWM for position i

Di
+ = sequences in T with base Ci at position i

Di
- = other sequences

left subtree = find_MDD_subtree(Di
+ , P – { i })

right subtree = find_MDD_subtree(Di
- , P – { i })

else

create a partial PWM for remaining positions in P

),(2

ji

ij

i xCS 


 

test for position j

conditioned on match to 

consensus at i
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Stopping Criteria for MDD

1. The (k-1)th level is reached; no further positions to split 

on

2. No significant dependencies between positions are 

detected

3. Number of sequences in given subset is sufficiently 

small
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A Graphical View of 

Dependency Structure

x1 x2 x3 x4

• We can represent the dependency structure of a 
sequence model as a graph

– nodes represent sequence positions

– edges represent dependencies in probability 
distribution

• Dependency structure of a 0th order Markov chain  of 
length 4   (e.g. a motif model inferred by MEME) :

• Note: this is different than the transition graph
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A Graphical View of 

Dependency Structure

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

• 1st order model

• 2nd order model

• For a fixed-length model, we could consider arbitrary 

dependencies
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A Graphical View of 

Dependency Structure
• MDD allows arbitrary dependencies conditioned on 

values of certain variables

x3 = G
yes no

x4 = G
yes no

x1 x2

x3

x4

x1 x2

x3 x4

x1 x2

x3 x4
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GENSCAN Conclusions

• HMMs readily enable background knowledge to be 
incorporated into the model

– state topology

– length distributions

– order of Markov chains

• Key technical ideas

– semi-Markov models (previously developed): can 
represent arbitrary length distributions

– MDD: can represent context-specific 
dependencies
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