Eukaryotic Gene Finding: The GENSCAN System

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu

Goals for Lecture

Key concepts

- How knowledge about sequence elements can be used to make representational choices (topology, length distributions) in an HMM
- Maximal dependence decomposition (MDD)
- Understanding MDD as a graphical model

Eukaryotic Gene Structure

-igure from Burge & Karlin, *Journal of Molecular Biology*, 1997

Parsing a DNA Sequence

The GENSCAN HMM

- For each sequence type, GENSCAN models
 - the length distribution
 - the sequence composition
- Length distribution models vary depending on sequence type
 - * nonparametric (using histograms)
 - parametric (using geometric distributions)
 - fixed-length
- Sequence composition models vary depending on type
 - 5th-order inhomogeneous
 - 5th-order homogenous
 - 1st-order inhomogeneous
 - * tree-structured variable memory (MDD)

The GENSCAN HMM

- Semi-Markov models are well-motivated for some sequence elements (e.g. exons)
 - Semi-Markov: model length duration of hidden states
 - Also called generalized hidden Markov model
- Dependency structure of splice sites motivates the use of MDD models, which can represent contextspecific dependencies
 - Imagine a PWM that allows for complex column-column dependencies
 - Those dependencies can be conditional on the values of other columns

Length Distributions of Introns/Exons

Splice Signals

donor sites

acceptor sites

 There are significant dependencies among non-adjacent positions in donor splice signals

Splice Signals

All sites:						Position	n			
Ba	se	-3	-2	-1	+1	+2	+3	+4	+5	+6
A	76	33	60	8	0	0	49	71	6	15
C	70	37	13	4	0	0	3	7	5	19
G	%	18	14	81	100	0	45	12	84	20
U	70	12	13	7	0	100	3	9	5	46
U1 snRNA:	3'	G	U	С	С	Α	U	U	С	Α

Donor splice signals driven by complementarity to U1 small nuclear RNA

Motivation for MDD

How can we detect significant dependencies between non-adjacent positions?

Compute χ² values using 4 × 2 table
alternative hypothesis: distribution for column *j* depends on whether the consensus base is in column *i* null hypothesis: distribution for column *j* is independent of consensus status in column *i*

Motivation for MDD

- Table shows χ^2 values for pairs of positions around donor sites
- Values marked with * show statistically significant dependency

Table 4. Dependence between positions in human donor splice sites: χ^2 -statistic for consensus indicator variable C_i versus nucleotide indicator X_i

i	Con	<i>j</i> : −3	-2	-1	+3	+4	+5	+6	Sum
-3 -2	c/a A	115.6*	61.8*	14.9 40.5*	5.8 20.3*	20.2* 57.5*	11.2 59.7*	18.0* 42.9*	131.8* 336.5* 210.8*
-1 +3	a/g	8.6	82.8* 17.5*	13.1		61.5* 19.3*	41.4* 1.8	0.1	60.5*
+4 +5 +6	A G t	21.8* 11.6 22.2*	56.0* 60.1* 40.7*	62.1* 41.9* 103.8*	64.1* 93.6* 26.5*		56.8* 	0.2 33.6*	260.9* 387.3* 243.6*

The Maximal Dependence Decomposition Approach

- Induce a <u>tree</u> that represents the dependency structure apparent in the data
- Induce partial <u>position weight matrices</u> for each node and leaf of tree

	1	2	3	4	5	6	7	8
Α	0.1	0.3	0.1	0.2	0.2	0.4	0.3	0.1
С	0.5	0.2	0.1	0.1	0.6	0.1	0.2	0.7
G	0.2	0.2	0.6	0.5	0.1	0.2	0.2	0.1
т	0.2	0.3	0.2	0.2	0.1	0.3	0.3	0.1

• Use the tree + weight matrices to calculate the probability of a given sequence

Structure of a MDD Learned Tree

					All donor splice sites	A, C	, or	U at	t pos	5 (not G
Pos	A%	C%	G%	U%	(1254) P	os .	A%	C%	G%	U%
-3	33	36	19	13		3	35	44	16	6
-2	56	15	15	15		2 :	85	4	7	5
-1	9	4	78	9	$\left(\begin{array}{c} G_5 \end{array}\right) \left(\begin{array}{c} H_5 \end{array}\right)$	1	2	1	97	0
+3	44	3	51	3	(1057) (197) +	3	81	3	15	2
+4	75	4	13	9		4 :	51	28	9	12
+6	14	18	19	49	+	6	22	20	30	28
-3	34	37	18	11		3	29	31	21	18
-2	59	10	15	16	(G_5G_1) (G_5H_1) -2	2 .	43	30	17	11
+3	40	4	53	3	(823) (234) +	3	56	0	43	0
+4	70	4	16	10		4	93	2	3	3
+6	17	21	21	42	1 \ +	6	5	10	10	76
-3	37	42	18	3		3	29	30	18	23
+3	39	5	51	5	$(G_5G_1A_2)$ $(G_5G_1B_2)$ +	3	42	1	56	1
+4	62	5	22	11	(487) (336) .	4	80	4	8	8
+6	19	20	25	36		6	14	21	16	49
-3	32	40	23	5		3	39	43	15	2
+3	27	4	59	10	(G5G.1A.2U6) (G5G.1A.2V6)	3	46	6	46	3
+4	51	5	25	19	(177) (310) +	4	69	5	20	7

Figure from Burge & Karlin, Journal of Molecular Biology, 1997

Explaining a Sequence with a MDD Tree

calculate $P(x_5)$ if $x_5 \neq G$ use the weight matrix for H_5 subset else calculate $P(x_{1})$ from G_5 subset if $X_{1} \neq G$ use the WM for G_5H_1 subset else calculate $Pr(x_2)$ from G_5G_1 subset

Explaining a Sequence with a MDD Tree

• Using model from previous slide

 $P(AAGGUCAGU) = 0.3 \times 0.5 \times 0.7 \times 1 \times 1 \times 0.1 \times 0.5 \times 0.7 \times 0.6$ -3 -1 1 6

The MDD Algorithm: Finding the Tree

Given: a set of aligned training sequences Tpositions $P = \{1, ..., k\}$ tree = find_MDD_subtree(T, P)

find_MDD_subtree(T, P) for each position *i* in P determine the consensus base C_i calculate dependence between C_i , other positions $S_i = \sum \chi^2(C_i, x_j)$

if stopping criteria not met

choose the value of *i* such that S_i is maximal make a node with C_i as the test

create a single-column PWM for position i

 D_i^+ = sequences in T with base C_i at position *i*

 D_i^- = other sequences

left subtree = find_MDD_subtree(D_i^+ , $P - \{i\}$)

right subtree = find_MDD_subtree(D_i^- , $P - \{i\}$)

else

create a partial PWM for remaining positions in P

test for position *j* conditioned on match to consensus at i

Stopping Criteria for MDD

- 1. The (k-1)th level is reached; no further positions to split on
- 2. No significant dependencies between positions are detected
- 3. Number of sequences in given subset is sufficiently small

A Graphical View of Dependency Structure

- We can represent the <u>dependency</u> structure of a sequence model as a graph
 - nodes represent sequence positions
 - edges represent dependencies in probability distribution
- Dependency structure of a 0th order Markov chain of length 4 (e.g. a motif model inferred by MEME) :

 X_{4}

• Note: this is different than the transition graph

X3

 X_2

A Graphical View of Dependency Structure

• 1st order model

• 2nd order model

• For a fixed-length model, we could consider arbitrary dependencies

A Graphical View of Dependency Structure

 MDD allows arbitrary dependencies conditioned on values of certain variables

GENSCAN Conclusions

- HMMs readily enable background knowledge to be incorporated into the model
 - state topology
 - length distributions
 - order of Markov chains
- Key technical ideas
 - semi-Markov models (previously developed): can represent arbitrary length distributions
 - MDD: can represent context-specific dependencies