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Goals for Lecture

Key concepts:

e Markov Chain Monte Carlo (MCMC) and Gibbs sampling
e Gibbs sampling applied to the motif-finding task

e parameter tying

 Incorporating prior knowledge using Dirichlets and
Dirichlet mixtures



Gibbs Sampling: An Alternative to EM

« EM can get trapped in local maxima

 One approach to alleviate this limitation: try different
(perhaps random) initial parameters

o Gibbs sampling exploits randomized search to a
much greater degree

e Can view it as a stochastic analog of EM for this task

* Intheory, Gibbs sampling is less susceptible to local
maxima than EM
 [Lawrence et al., Science 1993]



Gibbs Sampling Approach

* Inthe EM approach we maintained a distribution Z;@
over the possible motif starting points for each
sequence at iteration t

* Inthe Gibbs sampling approach, we’ll maintain a
specific starting point for each sequence al_but we'll
keep randomly resampling these



Gibbs Sampling Algorithm for
Motif Finding

given: length parameter W, training set of sequences
choose random positions for a
do
pick a sequence X,
estimate p given current motif positions a
(using all sequences but XI_) (predictive update step)
sample a new motif position g, for X . (sampling step)
until convergence
return: p, a



Markov Chain Monte Carlo (MCMC)

« Consider a Markov chain in which, on each time step, a grasshopper
randomly chooses to stay in its current state, jump one state left or jump
one state right.
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Figure from Koller & Friedman, Probabilistic Graphical Models, MIT Press

« Let PO(u) represent the probability of being in state u at time t in the
random walk

PO0)=1 POGE1)=0 PPE2)=0
PP0)=0.5 PPH1)=0.25 PPH2)=0
PP0)=0.375 PP1) =025 PP(+2)=0.0625

PI0) ~0.11 PU9(41) ~ 0.11 PU(2) ~0.11



The Stationary Distribution

o Let P(u) represent the probability of being in state u at any
given time in a random walk on the chain

PO u) = P (u)
PYD(u) = ZP” ‘Wr(u|v)

N

probability of probability of
state v transition v—u

e The stationary distribution is the set of such probabilities
for all states



Markov Chain Monte Carlo (MCMC)

 We can view the motif finding approach in terms of a Markov chain

« Each state represents a configuration of the starting positions (a; values
for a set of random variables A, ... A))

e Transitions correspond to changing selected starting positions (and
hence moving to a new state)

ACATCCG ACATCCG
CGACTAC CGACTAC
ATTGAGC ATTGAGC
CGTTGAC CGTTGAC
GAGTGAT ~ GAGTGAT
TCGTTGG " TCGTTGG
ACAGGAT T(V ‘ u) ACAGGAT
TAGCTAT TAGCTAT
GCTACCG GCTACCG
GGCCTCA GGCCTCA
State u State v



Markov Chain Monte Carlo

In motif-finding task, the number of states is enormous

Key idea: construct Markov chain with stationary
distribution equal to distribution of interest; use sampling to
find most probable states

Detailed balance:

/P(u)’r(v @ =P()r(u|v)

probability of probability of
state u transition u—v

When detailed balance holds:

|
ﬁth% count(u) = P(u)



MCMC with Gibbs Sampling

Gibbs sampling is a special case of MCMC in which

« Markov chain transitions involve changing one
variable at a time

 transition probability is conditional probability of the
changed variable given all others

e |.e. we sample the joint distribution of a set of random
variables P(4,...A,) by iteratively sampling from

P(4.|4,..4_,A4,,,..4,)

i+1°*



ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

Gibbs Sampling Approach

* Possible state transitions when first sequence is selected

» ACATCCG

CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA



Gibbs Sampling Approach

e Lawrence et al. maximize the likelihood ratio
P(X | motif)
P(X | background)

« How do we get the transition probabilities when we don't
know what the motif looks like?



Gibbs Sampling Approach

 The probability of a state is given by

nc,j(u)

P(U) oC HIV_V[ pc’j ™~ count of

¢ ja pco Cc in motif position |
background probability probability of
for character c Cc in motif position |
U
ACATCCG
CGACTAC n(u)
ATTGAGC 1 2 3
CGTTGAC
eaeTeaT 43|
TCGTTGG cl| 5|2 |1
ACAGGAT See Li l., JASA, 1995
ee Liu et al., ,
TAGCTAT G 2 2 6 for the full derivation
GCTACCG T 1 21035
GGCCTCA




Sampling New Motif Positions

 For each possible starting position, 4, = j, compute
the likelihood ratio (leaving sequence i out of

estimates of p) FeW—l

I Ipck, k—j+1

LR()=—7,

J+W -1

l lpck,O
-

» Randomly select a new starting position 4. = j with
probability
LR())
D _LR(k)

k c{starting positions}




The Phase Shift Problem

e Gibbs sampler can get stuck in a local maximum that
corresponds to the correct solution shifted by a few
bases

e Solution: add a special step to shift the a values by
the same amount for all sequences

o Try different shift amounts and pick one in proportion
to its probability score



vl
&«

Information per parameter (bits)

O
(o)

O
$

Convergence of Gibbs

b
P

e
i

=
b

ey
<@

o
(00
L

true motif deleted from
Input sequences

0

1000

2000 3000 4000 5000
Number of iterations

6000




Using Background Knowledge to
Bias the Parameters

Let’s consider two ways in which background
knowledge can be exploited in motif finding

1. Accounting for palindromes that are common in DNA
binding sites

2. Using Dirichlet mixture priors to account for
biochemical similarity of amino acids



Using Background Knowledge to
Bias the Parameters

« Many DNA motifs have a palindromic pattern
because they are bound by a protein homodimer: a
complex consisting of two identical proteins

Nucleotide spacer
between ZFN binding sites

I I

ZFN binding site
I

Fokl nuclease
domain (Fn)

W-N“u NN
N NII-I KIIN

Fogl nuclease
domain (Fn)

|
ZFN binding site
ci;?;u/n«

“¢ " Amino acid
Finger1  Finger2 Finger 3 linker
ZFN finger domain

|
ZFN full site



Representing Palindromes

o Parameters in probabilistic models can be “tied” or
“shared”

pa,O

e During motif search, try tying parameters according
to palindromic constraint; accept if it increases
likelihood ratio test (half as many parameters)



Updating Tied Parameters

pa,O

”a,1+”t,w+d 1+dt,W

a)

pa,l Ep,W —
t Z(”b,1+db, 1)+Z(”b,w T db,W)
b b




Including Prior Knowledge

Recall that the EM/Gibbs update the parameters by:

nc,k_l_ dc,k

Z(”b, . db, )

b

Can we use background knowledge to guide our
choice of pseudocounts (d;,)?

pc,k:

Suppose we're modeling protein sequences...
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Using Dirichlet Mixture Priors

e Because we’re estimating multinomial distributions
(frequencies of amino acids at each motif position), a
natural way to encode prior knowledge is using
Dirichlet distributions

e Let's consider
e the Beta distribution
e the Dirichlet distribution
e mixtures of Dirichlets



The Beta Distribution

o Suppose we're taking a Bayesian approach to
estimating the parameter 6 of a weighted coin

 The Beta distribution provides an appropriate prior

- I(a,+a) o4 el
o= r(oz,,)r(oa)‘9 (1=0)

where
a, # of “imaginary” heads we have seen already

@, # of “imaginary” tails we have seen already

I"  continuous generalization of
/\l I\

factorial function
0 Beta(1.1) 1 Beta(2.2) Beta(3.2) Beta(19,39)



The Beta Distribution

e Suppose now we're given a data set D in which we
observe D, heads and D, tails

I'(a+D,+D,)
I'(a, + D) (a, +D,)

P(Q | D) — 90!,,+Dh—1(1 . g)at +D,—1

=Beta(a, + D,,a, + D)

* The posterior distribution is also Beta: we say that the
set of Beta distributions is a conjugate family for
binomial sampling



The Dirichlet Distribution

* For discrete variables with more than two possible
values, we can use Dirichlet priors

 Dirichlet priors are a conjugate family for multinomial

data K
)
P(O)=—% = Heiai_l
[[r@) =

o If P(0) is Dirichlet(a,, . .., ayx), then P(6|D) Is
Dirichlet(a;+Dy, . . ., ax+Dy), where D; is the #
occurrences of the i"" value




Dirichlet Distributions

Probability density (shown on a simplex) of Dirichlet distributions for
K=3 and various parameter vectors a

i5 -

Image from Wikipedia, MATLAB code by Peter Perkins



Mixture of Dirichlets

 We’'d like to have Dirichlet distributions characterizing
amino acids that tend to be used In certain “roles”

 Brown et al. [ISMB ‘93] induced a set of Dirichlets from
“trusted” protein alignments

— “large, charged and polar”

— “polar and mostly negatively charged”
— “hydrophobic, uncharged, nonpolar”
— elc.



Trusted Protein Alignments

e Atrusted protein alignment is one in which known
protein structures are used to determine which parts of
the given set of sequences should be aligned

C

(a) 2580558 Hs 886 HLSLIVRFPNQGRQVDELDIWSHTNDTIGSVRRCIVNRIKA-N 927
6678523 Mm 885 HLSFIVRFPNQGRQVDDLEVWSHTNDTIGSVRRCILNRIKA-N 926
22507351 Mm 885 HLSFTVRFPNQGKEVEDLDILSHTNATIGSVRRCILNRMNV-N 926
31235452 Ag 835 QVELIVKFQTPGRQLDDIELLSHSNETMHSFKRNLLRRIKVLK 877
24651755 Dm 979 NTILYIRFONPGRSIDDMEIVTHSNETMAAFKRNLLKRIKGTS 1021




Using Dirichlet Mixture Priors

* Recall that the EM/GIibbs update the parameters by:
n,+d,,

Z(”b kT db ¢)

 We can set the pseudocounts using a mixture of
Dirichlets:

=2 P(@” n)al”
J

 where (I(-f:is the jt Dirichlet component



Using Dirichlet Mixture Priors

=Y P@”|n,) a¥

/ \

probability of jth Dirichlet parameter for character c
given observed counts in j™ Dirichlet

 We don’t have to know which Dirichlet to pick

* Instead, we’ll hedge our bets, using the observed
counts to decide how much to weight each Dirichlet

See textbook section 11.5



Motif Finding: EM and Gibbs

These methods compute local, multiple alignments
Optimize the likelihood or likelihood ratio of the sequences
EM converges to a local maximum

Gibbs will “converge” to a global maximum, in the limit; in a reasonable
amount of time, probably not

Can take advantage of background knowledge by
— tying parameters
— Dirichlet priors

There are many other methods for motif finding
In practice, motif finders often fall

— motif “signal” may be weak

— large search space, many local minima

— do not consider binding context
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