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Goals for Lecture

Key concepts

• the gene-finding task

• the trade-off between potential predictive value and 

parameter uncertainty in choosing the order of a Markov 

model

• interpolated Markov models
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The Gene Finding Task

Given: an uncharacterized DNA sequence

Do: locate the genes in the sequence, including the 

coordinates of individual exons and introns
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Sources of Evidence for Gene Finding

• Signals: the sequence signals (e.g. splice junctions) 
involved in gene expression

• Content: statistical properties that distinguish 
protein-coding DNA from non-coding DNA

• Conservation: signal and content properties that are 
conserved across related sequences (e.g. 
orthologous regions of the mouse and human 
genome)
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Gene Finding: Search by Content

• Encoding a protein affects the statistical properties of 

a DNA sequence

– some amino acids are used more frequently than 

others (Leu more popular than Trp)

– different numbers of codons for different amino 

acids (Leu has 6, Trp has 1)

– for a given amino acid, usually one codon is used 

more frequently than others

• this is termed codon preference

• these preferences vary by species
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Codon Preference in E. Coli

AA      codon    /1000

----------------------

Gly GGG       1.89

Gly GGA       0.44

Gly GGU      52.99

Gly GGC      34.55

Glu GAG      15.68

Glu GAA      57.20

Asp     GAU      21.63

Asp     GAC      43.26
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Reading Frames

• A given sequence may encode a protein in any of the 

six reading frames

G C T A C G G A G C T T C G G A G C

C G A T G C C T C G A A G C C T C G
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Open Reading Frames (ORFs)

G T T A T G G C T  • • • T C G T G A T T

• An ORF is a sequence that

– starts with a potential start codon

– ends with a potential stop codon, in the same 
reading frame

– doesn’t contain another stop codon in-frame

– and is sufficiently long (say > 100 bases)

• An ORF meets the minimal requirements to be a 
protein-coding gene in an organism without introns
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Markov Models & Reading Frames

• Consider modeling a given coding sequence

• For each “word” we evaluate, we’ll want to consider its 

position with respect to the reading frame we’re assuming

G C T A C G G A G C T T C G G A G C

G C T A C G

reading frame

G is in 3rd codon position

C T A C G G G is in 1st position

T A C G G A A is in 2nd position

• Can do this using an inhomogeneous model
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A Fifth Order Inhomogeneous 

Markov Chain
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Selecting the Order of a 

Markov Chain Model
• Higher order models remember more “history”

• Additional history can have predictive value

• Example:

– predict the next word in this sentence fragment  

“…you__” (are, give, passed, say, see, too, …?)

– now predict it given more history

“…can you___”

“…say can you___”

“…oh say can you___”
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Selecting the Order of a 

Markov Chain Model

• But the number of parameters we need to estimate 
grows exponentially with the order

– for modeling DNA we need                 parameters 
for an nth order model

• The higher the order, the less reliable we can expect 
our parameter estimates to be

• Suppose we have 100k bases of sequence to 
estimate parameters of a model

– for a 2nd order homogeneous Markov chain, we’d 
see each history 6250 times on average

– for an 8th order chain, we’d see each history ~ 1.5 
times on average

)4( 1+nO
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Interpolated Markov Models

• The IMM idea: manage this trade-off by interpolating 

among models of various orders

• Simple linear interpolation:
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Interpolated Markov Models

• We can make the weights depend on the history

– for a given order, we may have significantly more 

data to estimate some words than others

• General linear interpolation
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The GLIMMER System
[Salzberg et al., Nucleic Acids Research, 1998]

• System for identifying genes in bacterial genomes

• Uses 8th order, inhomogeneous, interpolated Markov 

chain models
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IMMs in GLIMMER

• How does GLIMMER determine the      values?

• First, let’s express the IMM probability calculation 

recursively
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• Let                         be the number of times we see the 

history                     in our training set
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IMMs in GLIMMER

• If we haven’t seen                     more than 400 times, 

then compare the counts for the following:
1,...,  ini xx

axx ini ,,..., 1

cxx ini ,,..., 1

gxx ini ,,..., 1

txx ini ,,..., 1

axx ini ,,..., 11 

cxx ini ,,..., 11 

gxx ini ,,..., 11 

txx ini ,,..., 11 

nth order history + base (n-1)th order history + base

• Use a statistical test (     ) to get a value d indicating 

our confidence that the distributions of      depend on 

the order

2
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IMMs in GLIMMER
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• Putting it all together
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IMM Example

ACGA 25

ACGC 40

ACGG 15

ACGT 20

___

100

CGA  100

CGC 90

CGG 35

CGT 75

___

300

GA  175

GC 140

GG 65

GT 120

___

500

• Suppose we have the following counts from our training set

χ2 test: d = 0.857 χ2 test: d = 0.140 

λ3(ACG) = 0.857 × 100/400 = 0.214   

λ2(CG) = 0    (d < 0.5,  c(CG) < 400)  

λ1(G) = 1    (c(G) > 400)  
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IMM Example (Continued)

• Now suppose we want to calculate
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Gene Recognition in GLIMMER

• Essentially ORF classification 

• For each ORF 

– calculate the probability of the ORF sequence in 

each of the 6 possible reading frames

– if the highest scoring frame corresponds to the 

reading frame of the ORF, mark the ORF as a gene

• For overlapping ORFs that look like genes

– score overlapping region separately

– predict only one of the ORFs as a gene
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GLIMMER Experiment

• 8th order IMM vs. 5th order Markov model

• Trained on 1168 genes (ORFs really)

• Tested on 1717 annotated (more or less known) genes
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GLIMMER Results 

TP FN FP & TP?

• GLIMMER has greater sensitivity than the baseline

• It’s not clear if its precision/specificity is better
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