Stochastic Context Free Grammars for RNA Structure Modeling

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu

Goals for Lecture

Key concepts

- transformational grammars
- the Chomsky hierarchy
- context free grammars
- stochastic context free grammars
- parsing ambiguity

Covered briefly

- the Inside and Outside algorithms
- parameter learning via the Inside-Outside algorithm

Modeling RNA with Stochastic Context Free Grammars

- Consider tRNA genes
 - 274 in yeast genome, ~1500 in human genome
 - get transcribed, like protein-coding genes
 - don't get translated, therefore base statistics much different than protein-coding genes
 - but secondary structure is conserved
- To recognize new tRNA genes, model known ones using stochastic context free grammars [Eddy & Durbin, 1994; Sakakibara et al. 1994]
- But what is a grammar?

Transformational Grammars

- A transformational grammar characterizes a set of legal strings
- The grammar consists of
 - a set of abstract nonterminal symbols

 $\{s, c_1, c_2, c_3, c_4\}$

- a set of *terminal* symbols (those that actually appear in strings) $\{A, C, G, U\}$

- a set of productions

$$s \rightarrow c_1 \quad c_1 \rightarrow Uc_2 \quad c_2 \rightarrow Ac_3 \quad c_3 \rightarrow A \quad c_4 \rightarrow A$$

 $c_2 \rightarrow Gc_4 \quad c_3 \rightarrow G$

A Grammar for Stop Codons $s \rightarrow c_1 \quad c_1 \rightarrow Uc_2 \quad c_2 \rightarrow Ac_3 \quad c_3 \rightarrow A \quad c_4 \rightarrow A$ $c_2 \rightarrow Gc_4 \quad c_3 \rightarrow G$

- This grammar can generate the 3 stop codons: UAA, UAG, UGA
- With a grammar we can ask questions like
 - what strings are derivable from the grammar?
 - can a particular string be derived from the grammar?
 - what sequence of productions can be used to derive a particular string from a given grammar?

The Derivation for UAG

$$s \rightarrow c_1 \quad c_1 \rightarrow Uc_2 \quad c_2 \rightarrow Ac_3 \quad c_3 \rightarrow A \quad c_4 \rightarrow A$$

 $c_2 \rightarrow Gc_4 \quad c_3 \rightarrow G$

$s \Rightarrow c_1 \Rightarrow Uc_2 \Rightarrow UAc_3 \Rightarrow UAG$

Some Shorthand

The Chomsky Hierarchy

 A hierarchy of grammars defined by restrictions on productions

The Chomsky Hierarchy

- Regular grammars $u \to Xv$ $u \to X$
- Context-free grammars $u \to \beta$
- Context-sensitive grammars

$$\alpha_1 u \alpha_2 \to \alpha_1 \beta \alpha_2$$

- Unrestricted grammars $\alpha_1 u \alpha_2 \rightarrow \gamma$
 - \mathcal{U}, \mathcal{V} are nonterminals
 - X is a terminal
 - α, γ are any sequence of terminals/nonterminals
 - eta is any non-null sequence of terminals/nonterminals

CFGs and RNA

- Context free grammars are well suited to modeling RNA secondary structure because they can represent base pairing preferences
- A grammar for a 3-base stem with a loop of either GAAA or GCAA

$$s \rightarrow Aw_1U \mid Cw_1G \mid Gw_1C \mid Uw_1A$$
$$w_1 \rightarrow Aw_2U \mid Cw_2G \mid Gw_2C \mid Uw_2A$$
$$w_2 \rightarrow Aw_3U \mid Cw_3G \mid Gw_3C \mid Uw_3A$$
$$w_3 \rightarrow GAAA \mid GCAA$$

CFGs and RNA

a. Productions

$$P = \{ S_0 \rightarrow S_1, \qquad S_7 \rightarrow G S_8, \\ S_1 \rightarrow C S_2 G, \qquad S_8 \rightarrow G, \\ S_1 \rightarrow A S_2 U, \qquad S_8 \rightarrow U, \\ S_2 \rightarrow A S_3 U, \qquad S_9 \rightarrow A S_{10} U, \\ S_3 \rightarrow S_4 S_9, \qquad S_{10} \rightarrow C S_{10} G, \\ S_4 \rightarrow U S_5 A, \qquad S_{10} \rightarrow G S_{11} C, \\ S_5 \rightarrow C S_6 G, \qquad S_{11} \rightarrow A S_{12} U, \\ S_6 \rightarrow A S_7, \qquad S_{12} \rightarrow U S_{13}, \\ S_7 \rightarrow U S_7, \qquad S_{13} \rightarrow C \}$$

c. Parse tree

b. Derivation

- $S_0 \Rightarrow S_1 \Rightarrow \mathrm{C}S_2\mathrm{G} \Rightarrow \mathrm{C}\mathrm{A}S_3\mathrm{U}\mathrm{G} \Rightarrow \mathrm{C}\mathrm{A}S_4S_9\mathrm{U}\mathrm{G}$
 - \Rightarrow CAUS₅AS₉UG \Rightarrow CAUCS₆GAS₉UG
 - \Rightarrow CAUCAS₇GAS₉UG \Rightarrow CAUCAGS₈GAS₉UG
 - \Rightarrow CAUCAGGGA S_9 UG \Rightarrow CAUCAGGGAA S_{10} UUG
 - \Rightarrow CAUCAGGGAAG S_{11} CUUG
 - \Rightarrow CAUCAGGGAAGA S_{12} UCUUG
 - \Rightarrow CAUCAGGGAAGAU S_{13} UCUUG
 - \Rightarrow CAUCAGGGAAGAUCUCUUG.

d. Secondary Structure

Figure from: Sakakibara et al. Nucleic Acids Research, 1994

Ambiguity in Parsing

"I shot an elephant in my pajamas. How he got in my pajamas, I'll never know." – Groucho Marx

An Ambiguous RNA Grammar

- $s \to G \ s \ C$ $s \to G \ s$
- With this grammar, there are 3 parses for the string *GGGAACC*

 $s \rightarrow A A$

S S S GGG S S S G \boldsymbol{G} G S S S G \boldsymbol{G} GS S S A A A A

A Probabilistic Version of the Stop Codon Grammar $s \xrightarrow{1.0} c_1 c_1 \xrightarrow{1.0} Uc_2 c_2 \xrightarrow{0.7} Ac_3 c_3 \xrightarrow{0.2} A c_4 \xrightarrow{1.0} A$ $c_2 \xrightarrow{0.3} Gc_4 c_3 \xrightarrow{0.8} G$

- Each production has an associated probability
- Probabilities for productions with the same left-hand side sum to 1
- This *regular* grammar has a corresponding Markov chain model

Stochastic Context Free Grammars

(a.k.a. Probabilistic Context Free Grammars)

 $\begin{array}{cccccccc} 0.25 & 0.25 & 0.25 & 0.25 \\ s \rightarrow Aw_1 U \mid Cw_1 G \mid Gw_1 C \mid Uw_1 A \end{array}$

 $\begin{array}{cccccccc} 0.1 & 0.4 & 0.4 & 0.1 \\ w_1 \rightarrow A w_2 U \mid C w_2 G \mid G w_2 C \mid U w_2 A \end{array}$

 $\begin{array}{cccccccccc} 0.25 & 0.25 & 0.25 & 0.25 \\ w_2 \rightarrow Aw_3 U \mid Cw_3 G \mid Gw_3 C \mid Uw_3 A \end{array}$

 $\begin{array}{ccc} 0.8 & 0.2 \\ W_3 \rightarrow \text{GAAA} \mid \text{GCAA} \end{array}$

Stochastic Grammars?

...the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

— Noam Chomsky (famed linguist)

Every time I fire a linguist, the performance of the recognizer improves.

— Fred Jelinek

(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin, *Speech and Language Processing*

Three Key Questions

- How likely is a given sequence? the Inside algorithm
- What is the most probable parse for a given sequence?
 - the Cocke-Younger-Kasami (CYK) algorithm
- How can we learn the SCFG parameters given a grammar and a set of sequences?
 the Inside-Outside algorithm

Chomsky Normal Form

- It is convenient to assume that our grammar is in *Chomsky Normal Form*; i.e. all productions are of the form:
 - $v \rightarrow yz$ right hand side consists of two nonterminals $v \rightarrow A$ right hand side consists of a single terminal
- Any CFG can be put into Chomsky Normal Form

Converting a Grammar to CNF

 $s \to G \ s \ C$ $s \to G \ s$ $s \to A \ A$

 $s \rightarrow b_G p$ $p \rightarrow s b_c$ $s \rightarrow b_G s$ $s \rightarrow b_A b_A$ $b_G \rightarrow G$ $b_C \rightarrow C$ $b_{A} \rightarrow A$

Parameter Notation

- For productions of the form $v \rightarrow yz$, we'll denote the associated probability parameters

 $t_{v}(y,z)$ transition

- For productions of the form $v \to A$, we'll denote the associated probability parameters

$$e_v(A)$$
 emission

Determining the Likelihood of a Sequence: The Inside Algorithm

- Dynamic programming method, analogous to the Forward algorithm
- Involves filling in a 3D matrix

$$\alpha(i, j, v)$$

representing the probability of <u>all</u> parse subtrees rooted at nonterminal v for the subsequence from i to j Determining the Likelihood of a Sequence: The Inside Algorithm

• $\alpha(i, j, v)$: the probability of all parse subtrees rooted at nonterminal v for the subsequence from i to j

Inside Calculation Example

Determining the Likelihood of a Sequence: The Inside Algorithm

$$\alpha(i, j, v) = \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=i}^{j-1} t_{v}(y, z) \alpha(i, k, y) \alpha(k+1, j, z)$$

M is the number of nonterminals in the grammar

The Inside Algorithm

• Initialization (for i = 1 to L, v = 1 to M)

$$\alpha(i,i,v) = e_v(x_i)$$

• Iteration (for i = L-1 to 1, j = i+1 to L, v = 1 to M)

$$\alpha(i, j, v) = \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=i}^{j-1} t_{v}(y, z) \alpha(i, k, y) \alpha(k+1, j, z)$$

• Termination

 $Pr(x) = \alpha(1, L, 1)$ \uparrow start nonterminal

Learning SCFG Parameters

- If we know the parse tree for each training sequence, learning the SCFG parameters is simple
 - no hidden part of the problem during training
 - count how often each parameter (i.e. production) is used
 - normalize/smooth to get probabilities

- More commonly, there are many possible parse trees per sequence – we don't know which one is correct
 - thus, use an EM approach (Inside-Outside)
 - iteratively
 - determine expected # times each production is used
 - consider all parses
 - weight each by its probability
 - set parameters to maximize likelihood given these counts

The Inside-Outside Algorithm

- We can learn the parameters of an SCFG from training sequences using an EM approach called Inside-Outside
- In the E-step, we determine
 - the expected number of times each *nonterminal* is used in parses c(v)
 - the expected number of times each *production* is used in parses $c(v \rightarrow yz)$

$$c(v \rightarrow A)$$

• In the M-step, we update our production probabilities

• $\beta(i, j, v)$: the probability of parse trees rooted at the start nonterminal, excluding the probability of all subtrees rooted at nonterminal *v* covering the subsequence from *i* to *j*

Outside Calculation Example

The Outside Algorithm

- We can recursively calculate $\beta(i, j, v)$ from β values we've calculated for y
- The first case we consider is where v is used in productions of the form: $y \rightarrow zv$

The Outside Algorithm

• The second case we consider is where v is used in productions of the form: $y \rightarrow vz$

The Outside Algorithm

Initialization

 $\beta(1, L, 1) = 1$ (the *start* nonterminal)

 $\beta(1, L, v) = 0 \quad \text{for } v = 2 \text{ to } M$

• Iteration (for i = 1 to L, j = L to i, v = 1 to M)

$$\beta(i, j, v) = \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=1}^{i-1} t_{y}(z, v) \alpha(k, i-1, z) \beta(k, j, y) + \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=j+1}^{L} t_{y}(v, z) \alpha(j+1, k, z) \beta(i, k, y)$$

The Inside-Outside Algorithm

- We can learn the parameters of an SCFG from training sequences using an EM approach called Inside-Outside
- In the E-step, we determine
 - the expected number of times each *nonterminal* is used in parses c(v)
 - the expected number of times each *production* is used in parses $c(v \rightarrow yz)$

$$c(v \to A)$$

• In the M-step, we update our production probabilities

The Inside-Outside Algorithm

• The EM re-estimation equations (for 1 sequence) are:

$$\hat{e}_{v}(A) = \frac{c(v \to A)}{c(v)} = \frac{\sum_{i|x_{i}=A} \beta(i, i, v) e_{v}(A)}{\sum_{i=1}^{L} \sum_{j=i}^{L} \beta(i, j, v) \alpha(i, j, v)}$$

$$\hat{t}_{v}(y, z) = \frac{c(v \to yz)}{c(v)}$$

$$= \frac{\sum_{i=1}^{L-1} \sum_{j=i+1}^{L} \sum_{k=i}^{j-1} t_{v}(y, z) \beta(i, j, v) \alpha(i, k, y) \alpha(k+1, j, z)}{\sum_{i=1}^{L} \sum_{j=i}^{L} \beta(i, j, v) \alpha(i, j, v)}$$

Finding the Most Likely Parse: The CYK Algorithm

Involves filling in a 3D matrix

 $\gamma(i,j,v)$

representing the most probable parse subtree rooted at nonterminal v for the subsequence from i to j

• and a matrix for the traceback

$$\tau(i, j, v)$$

storing information about the production at the top of this parse subtree

The CYK Algorithm

- Initialization (for i = 1 to L, v = 1 to M) $\gamma(i, i, v) = \log e_v(x_i)$ $\tau(i, i, v) = (0, 0, 0)$
- Iteration (for i = 1 to L 1, j = i+1 to L, v = 1 to M)

$$\gamma(i, j, v) = \max_{\substack{y, z \\ k=i...j-1}} \left\{ \gamma(i, k, y) + \gamma(k+1, j, z) + \log t_v(y, z) \right\}$$

$$\tau(i, j, v) = \arg \max_{y, z} \left\{ \gamma(i, k, y) + \gamma(k+1, j, z) + \log t_v(y, z) \right\}$$

$$k=i\ldots j-1$$

• Termination $\log P(x, \hat{\pi} | \theta) = \gamma(1, L, 1)$ f start nonterminal

The CYK Algorithm Traceback

• Initialization:

push (1, L, 1) on the stack

• Iteration:

pop (i, j, v)// pop subsequence/nonterminal pair $(y, z, k) = \tau(i, j, v)$ // get best production identified by CYKif (y, z, k) == (0,0,0)// indicating a leafattach x_i as the child of velse

attach *y*, *z* to parse tree as children of *v* push(*i*, *k*, *y*) push(*k*+1, *j*, *z*)

Comparison of SCFG Algorithms to HMM Algorithms

	HMM algorithm	SCFG algorithm
optimal alignment	Viterbi	СҮК
probability of sequence	forward	inside
EM parameter estimation	forward-backward	inside-outside
memory complexity	O(LM)	$O(L^2M)$
time complexity	$O(LM^2)$	$O(L^3M^3)$