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Protein-protein Interaction 

Networks
• Yeast protein 

interactions 

from yeast two-

hybrid 

experiments

• Largest cluster 

in network 

contains 78% of 

proteins

lethal

non-lethal

slow growth

unknown

Knock-out phenotype

(Jeong et al., 2001, Nature)



Overview

• Experimental techniques for determining 

networks

• Comparative network tasks



Experimental techniques

• Yeast two-hybrid system

• Protein-protein interactions

• Microarrays or RNA-Seq

• Expression patterns of mRNAs

• Similar patterns imply involvement in same 

regulatory or signaling network

• Knock-out or perturbation studies

• Identify genes required for synthesis of 

certain molecules



Yeast two-hybrid system

(Stephens & Banting, 2000, Traffic)



Microarrays

(Eisen et al., 1998, PNAS)

genes



Knock-out studies

Rich media His- media

Growth?Yeast with one gene deleted



Network problems
• Network inference

• Infer network structure

• Motif finding

• Identify common subgraph topologies

• Pathway or module detection

• Identify subgraphs of genes that perform the 
same function or active in same condition

• Network comparison, alignment, querying

• Conserved modules

• Identify modules that are shared in networks 
of multiple species



Network motifs
• Problem: Find subgraph topologies that are 

statistically more frequent than expected

• Brute force approach

• Count all topologies of subgraphs of size m

• Randomize graph (retain degree 

distribution) and count again

• Output topologies that are over/under 

represented

Feed-forward loop: over-

represented in regulatory 

networks

not very common



Network modules

• Modules: dense (highly-connected) subgraphs 

(e.g., large cliques or partially incomplete 

cliques)

• Problem: Identify the component modules of a 

network

• Difficulty: definition of module is not precise

• Hierarchical networks have modules at 

multiple scales

• At what scale to define modules?



Comparative network analysis

• Compare or integrate networks from different...

• Interaction detection methods

• Yeast 2-hybrid, mass spectrometry, etc.

• Conditions

• Heat, media, other stresses

• Time points

• Development, cell cycle, stimulus response

• Species



Comparative tasks

• Integration

• Combine networks derived from different 

methods (e.g. experimental data types)

• Alignment

• Identify nodes, edges, modules common to 

two networks (e.g., from different species)

• Database query

• Identify subnetworks similar to query in 

database of networks



Conserved modules

• Identify modules in multiple species that 

have “conserved” topology

• Typical approach:

• Use sequence alignment to identify 

homologous proteins and establish 

correspondence between networks

• Using correspondence, output subsets 

of nodes with similar topology



Conserved interactions

• Network comparison 

between species also 

requires sequence 

comparison (typically)

• Protein sets compared to 

identify orthologs

• Common technique: 

highest scoring BLAST 

hits used for establishing 

correspondences
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interaction



Conserved modules

• Conserved module: orthologous 

subnetwork with significantly similar 

edge presence/absence
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Network alignment graph

• Analogous to pairwise sequence alignment
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Conserved module detection

(Sharan & Ideker, 2006)



Real module example

• Protein may have more than one ortholog in 

another network

Three species alignment (Sharan et al., 2005, 2006)

Ras-mediated 

regulation of cell 

cycle

Cell proliferation



Basic alignment strategy

• Define scoring function on subnetworks

• High score ⇒ conserved module

• Use BLAST to infer orthologous proteins

• Identify “seeds” around each protein: 

small conserved subnetworks centered 

around the protein

• Grow seeds by adding proteins that 

increase alignment score



Scoring functions via subnetwork modeling

• We wish to calculate the likelihood of a certain 

subnetwork U under different models

• Subnetwork model (Ms)

• Connectivity of U given by target graph H, 

each edge in H appearing in U with 

probability β (large)

• Null model (Mn)

• Each edge appears with probability 

according to random graph distribution 

(but with degree distribution fixed)

(Sharan et al., 2005)



Noisy observations

• Typically weight edges in graph 

according to confidence in interaction 

(expressed as a probability)

• Let

• Tuv: event that proteins u, v interact

• Fuv: event that proteins u, v do not 

interact

• Ouv: observations of possible 

interactions between proteins u and v



Subnetwork model probability

• Assume (for explanatory purposes) that 

subnetwork model is a clique:



Null model probability
• Given values for puv: probability of edge (u,v) 

in random graph with same degrees

• How to get random graph if we don’t know 

true degree distribution?  Estimate them:



Likelihood ratio

• Score subnetwork with (log) ratio of 

likelihoods under the two models

• Note the decomposition into sum of 

scores for each edge



Seed construction

• Finding “heavy induced subgraphs” is NP-hard 

(Sharan et al., 2004)

• Heuristic:

• Find high-scoring subgraph “seeds”

• Grow seeds greedily

• Seed techniques: for each node v:

• Find heavy subgraph of size 4 including v

• Find highest-scoring length 4 path with v



Randomizing graphs

• For statistical tests, need to keep degree 

distribution the same

• Shuffle step:

• Choose two edges (a,b), (c,d) in the 

current graph

• Remove those edges

• Add edges (a,d), (c,b)
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Predictions from alignments

• Conserved modules of proteins enriched for 

certain functions often indicate shared function 

of other proteins

• Use to predict function of unannotated 

proteins

• Sharan et al., 2005: annotated 4,645 proteins 

with estimated accuracy of 58-63%

• Predict missing interactions

• Sharan et al., 2005: 2,609 predicted 

interactions

• Test 60 in yeast, 40-52% accurate



Parallels to sequence analysis

(Sharan & Ideker, 2006)


