Comparative Network Analysis

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu

Protein-protein Interaction Networks

- Yeast protein interactions from yeast twohybrid experiments
- Largest cluster in network contains 78% of proteins

Knock-out phenotype

- lethal
- non-lethal
- slow growth
- unknown

Overview

- Experimental techniques for determining networks
- Comparative network tasks

Experimental techniques

- Yeast two-hybrid system
 - Protein-protein interactions
- Microarrays or RNA-Seq
 - Expression patterns of mRNAs
 - Similar patterns imply involvement in same regulatory or signaling network
- Knock-out or perturbation studies
 - Identify genes required for synthesis of certain molecules

Yeast two-hybrid system

Microarrays

Knock-out studies

Network problems

- Network inference
 - Infer network structure
- Motif finding
 - Identify common subgraph topologies
- Pathway or module detection
 - Identify subgraphs of genes that perform the same function or active in same condition
- Network comparison, alignment, querying
- Conserved modules
 - Identify modules that are shared in networks of multiple species

Network motifs

- Problem: Find subgraph topologies that are statistically more frequent than expected
- Brute force approach
 - Count all topologies of subgraphs of size m
 - Randomize graph (retain degree distribution) and count again
 - Output topologies that are over/under represented

Network modules

- Modules: dense (highly-connected) subgraphs (e.g., large cliques or partially incomplete cliques)
- Problem: Identify the component modules of a network
- Difficulty: definition of module is not precise
 - Hierarchical networks have modules at multiple scales
 - At what scale to define modules?

Comparative network analysis

- Compare or integrate networks from different...
 - Interaction detection methods
 - Yeast 2-hybrid, mass spectrometry, etc.
 - Conditions
 - Heat, media, other stresses
 - Time points
 - Development, cell cycle, stimulus response
 - Species

Comparative tasks

- Integration
 - Combine networks derived from different methods (e.g. experimental data types)
- Alignment
 - Identify nodes, edges, modules common to two networks (e.g., from different species)
- Database query
 - Identify subnetworks similar to query in database of networks

Conserved modules

- Identify modules in multiple species that have "conserved" topology
- Typical approach:
 - Use sequence alignment to identify homologous proteins and establish correspondence between networks
 - Using correspondence, output subsets of nodes with similar topology

Conserved interactions

- Network comparison between species also requires sequence comparison (typically)
- Protein sets compared to identify orthologs
- Common technique: highest scoring BLAST hits used for establishing correspondences

Conserved modules

 Conserved module: orthologous subnetwork with significantly similar edge presence/absence

Network alignment graph

Analogous to pairwise sequence alignment

Conserved module detection

(Sharan & Ideker, 2006)

Real module example

Three species alignment (Sharan et al., 2005, 2006)

Multiple alignment of protein interaction networks

 Protein may have more than one ortholog in another network

Basic alignment strategy

- Define scoring function on subnetworks
 - High score \Rightarrow conserved module
- Use BLAST to infer orthologous proteins
- Identify "seeds" around each protein: small conserved subnetworks centered around the protein
- Grow seeds by adding proteins that increase alignment score

Scoring functions via subnetwork modeling

- We wish to calculate the likelihood of a certain subnetwork U under different models
 - Subnetwork model (Ms)
 - Connectivity of U given by target graph H, each edge in H appearing in U with probability β (large)
 - Null model (M_n)
 - Each edge appears with probability according to random graph distribution (but with degree distribution fixed)

(Sharan et al., 2005)

Noisy observations

- Typically weight edges in graph according to confidence in interaction (expressed as a probability)
- Let
 - T_{uv}: event that proteins u, v interact
 - F_{uv}: event that proteins u, v do not interact
 - O_{uv}: observations of possible interactions between proteins u and v

Subnetwork model probability

 Assume (for explanatory purposes) that subnetwork model is a clique:

$$Pr(O_{U}|M_{s}) = \prod_{(u,v)\in U\times U} Pr(O_{uv}|M_{s})$$

=
$$\prod_{(u,v)\in U\times U} [Pr(O_{uv}|T_{uv},M_{s})Pr(T_{uv}|M_{s}) + Pr(O_{uv}|F_{uv},M_{s})Pr(F_{uv}|M_{s})]$$

=
$$\prod_{(u,v)\in U\times U} [\beta Pr(O_{uv}|T_{uv}) + (1-\beta)Pr(O_{uv}|F_{uv})]$$

Null model probability

 Given values for p_{uv}: probability of edge (u,v) in random graph with same degrees

 $Pr(O_U|M_n) = \prod_{(u,v)\in U\times U} [p_{uv}Pr(O_{uv}|T_{uv}) + (1-p_{uv})Pr(O_{uv}|F_{uv})]$

 How to get random graph if we don't know true degree distribution? Estimate them:

$$d_i = \sum_j Pr(T_{ij}|O_{ij})$$
$$Pr(T_{uv}|O_{uv}) = \frac{Pr(O_{uv}|T_{uv})Pr(T_{uv})}{Pr(O_{uv}|T_{uv})Pr(T_{uv}) + Pr(O_{uv}|F_{uv})(1 - Pr(T_{uv}))}$$

Likelihood ratio

 Score subnetwork with (log) ratio of likelihoods under the two models

$$L(U) = \log \frac{Pr(O_U|M_s)}{Pr(O_U|M_n)}$$

=
$$\sum_{(u,v)\in U\times U} \log \frac{\beta Pr(O_{uv}|T_{uv}) + (1-\beta)Pr(O_{uv}|F_{uv})}{p_{uv}Pr(O_{uv}|T_{uv}) + (1-p_{uv})Pr(O_{uv}|F_{uv})}$$

 Note the decomposition into sum of scores for each edge

Seed construction

- Finding "heavy induced subgraphs" is NP-hard (Sharan et al., 2004)
- Heuristic:
 - Find high-scoring subgraph "seeds"
 - Grow seeds greedily
- Seed techniques: for each node v:
 - Find heavy subgraph of size 4 including v
 - Find highest-scoring length 4 path with v

Randomizing graphs

- For statistical tests, need to keep degree distribution the same
- Shuffle step:
 - Choose two edges (a,b), (c,d) in the current graph
 - Remove those edges
 - Add edges (a,d), (c,b)

Predictions from alignments

- Conserved modules of proteins enriched for certain functions often indicate shared function of other proteins
 - Use to predict function of unannotated proteins
 - Sharan et al., 2005: annotated 4,645 proteins with estimated accuracy of 58-63%
- Predict missing interactions
 - Sharan et al., 2005: 2,609 predicted interactions
 - Test 60 in yeast, 40-52% accurate

Parallels to sequence analysis

1960	60 1970		1980			1990		
Biologica	al sequence	e comparis	on					
First protein sequences by Sanger, others ⁵⁸	Dayhoff ⁵⁹ Jukes/ Cantor ⁵⁵	Needleman/ Wunsch ⁶⁰	PAM, BLOSUM matrix Wate	Swiss-P GenBar EMBL-B hith/ arman ⁶¹	rot, nk, Sto sank Doolittle ⁶²	Taylor, ⁶⁴ Lipman, ⁶⁵ Others	sbr, ⁶⁶ vysky, ⁶⁷ chill ⁶⁸ BLAST	
A new type of data becomes routinely available	Mathematical models of evolution	Automated pairwise alignment	Scoring via transition probabilities Fast dy prograi align	Public genome-se database ynamic mming ment	cale Mini es Analysis of global properties; information content	ing for Hide fs and Mar mains mod Multiple alignment	den kov dels Database queries are staple of molecular biology	
Interaction letection with two-hybrid mass spec.	Interologs; evolutionary models	Ogata/ Kanehisa ²⁶	MaWish	BIND, DI MINT, GF BLAST	IP, Al RID net Scale-free m property; robustness	on's twork otifs ⁶⁹ Sharan/ Karp/Ideker ¹	??	
1990	2001	2002	2003	200	4 200	5 201	0?	

(Sharan & Ideker, 2006)