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Overview

® Experimental techniques for determining
networks

® Comparative network tasks



Experimental techniques

® Yeast two-hybrid system
® Protein-protein interactions
® Microarrays or RNA-Seq
® Expression patterns of mMRNAS

® Similar patterns imply involvement in same
regulatory or signaling network

® Knock-out or perturbation studies

® Identify genes required for synthesis of
certain molecules



Yeast two-hybrid system
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Microarrays

genes

(Eisen et al., 1998, PNAS)
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Knock-out studies

Yeast with one gene deleted Growth?
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Network problems

Network inference

® Infer network structure

Motif finding

® |dentify common subgraph topologies
Pathway or module detection

® |dentify subgraphs of genes that perform the
same function or active in same condition

Network comparison, alignment, querying
Conserved modules

® |dentify modules that are shared in networks
of multiple species



Network motifs

® Problem: Find subgraph topologies that are
statistically more frequent than expected

® Brute force approach
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Count all topologies of subgraphs of size m

Randomize graph (retain degree
distribution) and count again

Output topologies that are over/under
represented

Feed-forward loop: over- H

represented in regulatory
networks
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Network modules

® Modules: dense (highly-connected) subgraphs
(e.q., large cliques or partially incomplete
cliques)

® Problem: Identify the component modules of a
network

® Difficulty: definition of module is not precise

® Hierarchical networks have modules at
multiple scales

® At what scale to define modules?



Comparative network analysis

® Compare or integrate networks from different...
® Interaction detection methods
® Yeast 2-hybrid, mass spectrometry, etc.
® Conditions
® Heat, media, other stresses
® Time points
® Development, cell cycle, stimulus response

® Species



Comparative tasks

® Integration

® Combine networks derived from different
methods (e.g. experimental data types)

® Alignment

® Identify nodes, edges, modules common to
two networks (e.g., from different species)

® Database query

® Identify subnetworks similar to query in
database of networks



Conserved modules

® |dentify modules in multiple species that
have “conserved” topology

® Typical approach:

® Use sequence alignment to identify
homologous proteins and establish
correspondence between networks

® Using correspondence, output subsets
of nodes with similar topology



Conserved interactions

orthologs (nodes) ® Network comparison

inter\action between species also
requires seguence
comparison (typically)

® Protein sets compared to
identify orthologs

® Common technique:
highest scoring BLAST
hits used for establishing

interologs (edges) correspondences




Conserved modules

yeast human

® Conserved module: orthologous
subnetwork with significantly similar
edge presence/absence



Network alignment graph

network alignment graph

® Analogous to pairwise sequence alignment



Biological networks

Conserved module detection
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Real module example
Three species alignment (Sharan et al., 2005, 2006)

Multiple alignment of protein
interaction networks
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® Protein may have more than one ortholog in
another network
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Basic alignment strategy

® Define scoring function on subnetworks
® High score = conserved module
® Use BLAST to infer orthologous proteins

® ldentify “seeds” around each protein:
small conserved subnetworks centered
around the protein

® Grow seeds by adding proteins that
Increase alignment score



Scoring functions via subnetwork modeling

® We wish to calculate the likelihood of a certain
subnetwork U under different models

® Subnetwork model (Ms)

® Connectivity of U given by target graph H,
each edge in H appearing in U with
probability 3 (large)

® Null model (Mn)

® Each edge appears with probability
according to random graph distribution
(but with degree distribution fixed)

(Sharan et al., 2005)



Noisy observations

® Typically weight edges in graph
according to confidence In interaction
(expressed as a probabillity)

® Let

® Tuw: event that proteins u, v interact

® Fu: event that proteins u, v do not
Interact

® Ou: observations of possible
Interactions between proteins u and v



Subnetwork model probability

® Assume (for explanatory purposes) that
subnetwork model is a clique:

Pr(OylMs) = ]| Pr(Ow|M,)

(u,v)eUxU

[ [Pr(Ow|Tuw, My)Pr(Tyuy|My) + Pr(Oyy| Fuy, My) Pr(Fuy| M)
(uw,v)eUxU

H [ﬁpr(ouvlTuv) + (1 — ﬁ)PT(Ouu‘Fuv)}
(uw,v)eUxU



Null model probability

® Given values for puw: probability of edge (u,v)
In random graph with same degrees

PT(OU‘MR) — H @uuPT(OuﬂTuv) + (1 _puv)PT(OuulFuv)]
(u,v)eUxU

® How to get random graph if we don’t know
true degree distribution? Estimate them:

di — Z PT(TT;j ‘O”)
J

Pr(Ouy|Tuw) Pr(Tuy)
(Owo|Tun) Pr(Tyy) + Pr(Oyy|Fuy) (1 — Pr(Tyy))

Pr(Tyy|Ouy) = B



Likelihood ratio

® Score subnetwork with (log) ratio of
likelihoods under the two models

o PT(OylMS)

P?"(OU|MR)
_ Y BPr(Ouu|Tu) + (1 — B)Pr(Ous| Fuv)
puvPT(Ouv|Tuu) + (1 o puu)PT(Ouv|Fuu)

LU) = 1

(uw,v)EU XU

® Note the decomposition into sum of
scores for each edge



Seed construction

® Finding “heavy induced subgraphs” is NP-hard
(Sharan et al., 2004)

® Heuristic;
® Find high-scoring subgraph “seeds”
® Grow seeds greedily
® Seed techniques: for each node v:
® Find heavy subgraph of size 4 including v

® Find highest-scoring length 4 path with v



Randomizing graphs

® For statistical tests, need to keep degree
distribution the same

® Shuffle step:

® Choose two edges (a,b), (c,d) in the
current graph

® Remove those edges
® Add edges (a,d), (c,b)
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Predictions from alignments

® Conserved modules of proteins enriched for
certain functions often indicate shared function
of other proteins

® Use to predict function of unannotated
proteins

® Sharan et al., 2005: annotated 4,645 proteins
with estimated accuracy of 58-63%

® Predict missing interactions

® Sharan et al., 2005: 2,609 predicted
Interactions

® Test 60 in yeast, 40-52% accurate



Parallels to sequence analysis

1960 1970 1980 1990
Biological sequence comparison

First protein : § : § i § | | Haussbr®
' : PAM, : Swiss-Prot, : ! :
by Sanger  Dayhot” ; BLOSUM |  GenBank, |  Stormo® Es‘ém‘;,&
others 58 Jukes/ : matrix \ EMBL-Bank : ; : s
- Canbr®  Needleman/ ol 5 . Taylor™ i
: 0 : Waterman : 262 ' Lipman® ! BLAST
Wunsch . . Doolittle ; pman,™ i
' ‘ ' ' - ' ' others ‘ '
A new type i sconngvia | ublic I P
of data : : i : £ . Miningfor :  Higden !
s : :M|§."“ : gzmme-scale ! motifsand : Markoy !

: i : atabases - : :
ouinely modeieot | i P | domains i models
available  eyolution : § - § o :

| ; ' ; ; : Analysis of | ; :  Database
| : Automated | Fastdynamic | P 1) AREAN S
; : pairwise ' programming e : MU“'P'G : lecular
: alignment ; alignment : information ' alignment : MO
| : ' : : : content ; : - biology
' ‘ 5 ' BIND.DIP, |  Alons | :
Interaction : . ’ ' ' : 79
detection with Interologs; : MaYVsh P MINT,GRID ¢ ’‘etwork ”.??
two-hybrid  evolutionary : : : : Scale-l'r&e motifs™ -
: : property; | ~ : :
mass spec.  Models Opua/ ,, PamBLAST | robustness | sharay | 2772
. e,  SEERNESSET e ‘"J:' ---------- o ................... ‘Karplldeker"

.....
------
...................
.......

B.ologucal network companson i
1990 2001 2002 2003 2004 2005 2010?

(Sharan & Ideker, 2006)



