Comparative Gene Finding (abridged)

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu

Goals for Lecture

Key concepts:

- Related genomes as an additional source of evidence for gene finding
- Pair hidden Markov models
- Extending GENSCAN to emits pairs of observed variables

Why Use Comparative Methods?

- Genes are among the most conserved elements in the genome
 - use conservation to help infer locations of genes
- Some signals associated with genes are short and occur frequently in the genome
 - use conservation to eliminate false candidate sites from consideration

TWINSCAN

Korf et al., Bioinformatics 2001

- Extend GENSCAN using pre-computed conservation
- Prediction with TWINSCAN
 given: a sequence to be parsed, x
 using BLAST, construct a conservation sequence, c
 have HMM simultaneously parse (using Viterbi) x and c

Conservation Sequences in TWINSCAN

• Before processing a given sequence, TWINSCAN first computes a corresponding *conservation sequence*

• Based on BLAST matches sorted by alignment score

Conservation Sequence Example

Modeling Sequences in TWINSCAN

- Each state "emits" two sequences
 - the given DNA sequence, x
 - the conservation sequence, c
- Treats them as conditionally independent given the state

 $\Pr(q_i, d_i, x_i, c_i) \approx \Pr(d_i | q_i) \quad \Pr(x_i | q_i, d_i) \quad \Pr(c_i | q_i, d_i)$

SLAM

Pachter et al., RECOMB 2001

- Doesn't require a pre-computed alignment
- Combine generalized HMM (GENSCAN) and pair HMM – GPHMM
- Prediction with SLAM
 given: a pair of sequences to be parsed, x and y
 find approximate alignment of x and y
 run constrained Viterbi to have HMM simultaneously
 parse and align x and y

Pair Hidden Markov Models

• Each non-silent state emits one or a pair of characters

H: homology (match) state

I: insert state

D: delete state

PHMM Paths = Alignments

Generalized Pair HMMs

• Represent a parse π , as a sequence of states and a sequence of associated lengths for <u>each</u> input sequence

TWINSCAN vs SLAM

- Both use multiple genomes to predict genes
- Both use generalized HMMs
- TWINSCAN
 - takes as an input a genomic sequence, and a conservation sequence computed from an informant genome
 - models probability of both sequences; assumes they're conditionally independent given the state
 - predicts genes only in the genomic sequence
- SLAM
 - takes as input two genomic sequences
 - models joint probability of pairs of aligned sequences
 - can simultaneously predict genes and compute alignments
- More detailed slides in Spring 2015 syllabus
 - https://www.biostat.wisc.edu/bmi776/spring-15/syllabus.html